scholarly journals Fast decoding cell type–specific transcription factor binding landscape at single-nucleotide resolution

2021 ◽  
Author(s):  
Hongyang Li ◽  
Yuanfang Guan
2019 ◽  
Author(s):  
Hongyang Li ◽  
Yuanfang Guan

AbstractDecoding the cell type-specific transcription factor (TF) binding landscape at single-nucleotide resolution is crucial for understanding the regulatory mechanisms underlying many fundamental biological processes and human diseases. However, limits on time and resources restrict the high-resolution experimental measurements of TF binding profiles of all possible TF-cell type combinations. Previous computational approaches either can not distinguish the cell-context-dependent TF binding profiles across diverse cell types, or only provide a relatively low-resolution prediction. Here we present a novel deep learning approach, Leopard, for predicting TF-binding sites at single-nucleotide resolution, achieving the median area under receiver operating characteristic curve (AUROC) of 0.994. Our method substantially outperformed state-of-the-art methods Anchor and FactorNet, improving the performance by 19% and 27% respectively despite evaluated at a lower resolution. Meanwhile, by leveraging a many-to-many neural network architecture, Leopard features hundred-fold to thousand-fold speedup compared to current many-to-one machine learning methods.


Author(s):  
Sergey Abramov ◽  
Alexandr Boytsov ◽  
Dariia Bykova ◽  
Dmitry D. Penzar ◽  
Ivan Yevshin ◽  
...  

AbstractSequence variants in gene regulatory regions alter gene expression and contribute to phenotypes of individual cells and the whole organism, including disease susceptibility and progression. Single-nucleotide variants in enhancers or promoters may affect gene transcription by altering transcription factor binding sites. Differential transcription factor binding in heterozygous genomic loci provides a natural source of information on such regulatory variants. We present a novel approach to call the allele-specific transcription factor binding events at single-nucleotide variants in ChIP-Seq data, taking into account the joint contribution of aneuploidy and local copy number variation, that is estimated directly from variant calls. We have conducted a meta-analysis of more than 7 thousand ChIP-Seq experiments and assembled the database of allele-specific binding events listing more than half a million entries at nearly 270 thousand single-nucleotide polymorphisms for several hundred human transcription factors and cell types. These polymorphisms are enriched for associations with phenotypes of medical relevance and often overlap eQTLs, making candidates for causality by linking variants with molecular mechanisms. Specifically, there is a special class of switching sites, where different transcription factors preferably bind alternative alleles, thus revealing allele-specific rewiring of molecular circuitry.


2017 ◽  
Author(s):  
Daniel Quang ◽  
Xiaohui Xie

AbstractDue to the large numbers of transcription factors (TFs) and cell types, querying binding profiles of all TF/cell type pairs is not experimentally feasible, owing to constraints in time and resources. To address this issue, we developed a convolutional-recurrent neural network model, called FactorNet, to computationally impute the missing binding data. FactorNet trains on binding data from reference cell types to make accurate predictions on testing cell types by leveraging a variety of features, including genomic sequences, genome annotations, gene expression, and single-nucleotide resolution sequential signals, such as DNase I cleavage. To the best of our knowledge, this is the first deep learning method to study the rules governing TF binding at such a fine resolution. With FactorNet, a researcher can perform a single sequencing assay, such as DNase-seq, on a cell type and computationally impute dozens of TF binding profiles. This is an integral step for reconstructing the complex networks underlying gene regulation. While neural networks can be computationally expensive to train, we introduce several novel strategies to significantly reduce the overhead. By visualizing the neural network models, we can interpret how the model predicts binding which in turn reveals additional insights into regulatory grammar. We also investigate the variables that affect cross-cell type predictive performance to explain why the model performs better on some TF/cell types than others, and offer insights to improve upon this field. Our method ranked among the top four teams in the ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge.


2017 ◽  
Author(s):  
Jens Keilwagen ◽  
Stefan Posch ◽  
Jan Grau

Computational prediction of cell type-specific, in-vivo transcription factor binding sites is still one of the central challenges in regulatory genomics, and a variety of approaches has been proposed for this purpose.Here, we present our approach that earned a shared first rank in the “ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge” in 2017. This approach employs features derived from chromatin accessibility, binding motifs, gene expression, genomic sequence and annotation to train classifiers using a supervised, discriminative learning principle. Two further key aspects of this approach are learning classifier parameters in an iterative training procedure that successively adds additional negative examples to the training set, and creating an ensemble prediction by averaging over classifiers obtained for different training cell types.In post-challenge analyses, we benchmark the influence of different feature sets and find that chromatin accessiblity and binding motifs are sufficient to yield state-of-the-art performance for in-vivo binding site predictions. We also show that the iterative training procedure and the ensemble prediction are pivotal for the final prediction performance.To make predictions of this approach readily accessible, we predict 682 peak lists for a total of 31 transcription factors in 22 primary cell types and tissues, which are available for download at https://www.synapse.org/#!Synapse:syn11526239, and we demonstrate that these may help to yield biological conclusions. Finally, we provide a user-friendly version of our approach as open source software at http://jstacs.de/index.php/[email protected]


Sign in / Sign up

Export Citation Format

Share Document