scholarly journals The CMT2D Locus: Refined Genetic Position and Construction of a Bacterial Clone-Based Physical Map

1999 ◽  
Vol 9 (6) ◽  
pp. 568-574 ◽  
Author(s):  
Rachel E. Ellsworth ◽  
Victor Ionasescu ◽  
Charles Searby ◽  
Val C. Sheffield ◽  
Valerie V. Braden ◽  
...  

Charcot-Marie-Tooth (CMT) disease is a progressive neuropathy of the peripheral nervous system, typically characterized by muscle weakness of the distal limbs. CMT is noted for its genetic heterogeneity, with four distinct loci already identified for the axonal form of the disease (CMT2). In 1996, linkage analysis of a single large family revealed the presence of a CMT2 locus on chromosome 7p14 (designatedCMT2D). Additional families have been linked subsequently to the same genomic region, including one with distal spinal muscular atrophy (dSMA) and one with mixed features of dSMA and CMT2; symptoms in both of these latter families closely resemble those seen in the original CMT2D family. There is thus a distinct possibility that CMT2 and dSMA encountered in these families reflect allelic heterogeneity at a single chromosome 7 locus. In the study reported here, we have performed more detailed linkage analysis of the original CMT2D family based on new knowledge of the physical locations of various genetic markers. The region containing the CMT2D gene, as defined by the original family, overlaps with those defined by at least two other families with CMT2 and/or dSMA symptoms. Both yeast artificial chromosome (YAC) and bacterial clone-based [bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC)] contig maps spanning ∼3.4 Mb have been assembled across the combinedCMT2D critical region, with the latter providing suitable clones for systematic sequencing of the interval. Preliminary analyses have already revealed at least 28 candidate genes and expressed-sequence tags (ESTs). The mapping information reported here in conjunction with the evolving sequence data should expedite the identification of the CMT2D/dSMA gene or genes.

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Shoko Saji ◽  
Yosuke Umehara ◽  
Baltazar A Antonio ◽  
Hiroko Yamane ◽  
Hiroshi Tanoue ◽  
...  

A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.Key words: physical mapping, YAC contig, rice genome, rice chromosomes.


Genome ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 77-83
Author(s):  
R. Bruskiewich ◽  
M. Schertzer ◽  
S. Wood

A number of gene loci, including the locus for Werner syndrome (WRN), map to proximal human chromosome 8p near the genetic marker D8S339. In this report, we present a long range physical map of an approximately 2.8 megabase yeast artificial chromosome contig centred on D8S339. In this map, we localize the WRN-linked polymorphic sequence-tagged sites (STS) D8S339 and D8S1055, as well as a novel polymorphic STS, D8S2297. We also refine the positions of three known gene loci, GTF2E2, GSR, and PPP2CB, relative to the location of WRN within the map.Key words: WRN, GTF2E2, GSR, PPP2CB, physical map, human chromosome 8p.


Genome ◽  
1996 ◽  
Vol 39 (6) ◽  
pp. 1086-1092 ◽  
Author(s):  
Christian S. Hardtke ◽  
Thomas Berleth

In the course of the isolation of the MONOPTEROS (MP) gene, required for primary root formation in Arabidopsis thaliana, a yeast artificial chromosome (YAC) contig encompassing approximately 2200 kilobases corresponding to 5.5 cM on the top arm of chromosome 1 was established. Forty-six YAC clones were characterized and 12 new restriction fragment length polymorphism (RFLP) markers are presented. Three new codominant amplified polymorphic sequence (CAPS) markers were generated that enabled high resolution genetic mapping and correlation of physical and genetic distances along the contig. The map contributes to the completion of a physical map of the Arabidopsis genome and should facilitate positional cloning of other genes in the region as well as studies on genome organization. We also present another set of 11 physically linked probes, as well as mapping data for additional RFLP markers within a broader interval of 10.4 cM. Key words : Arabidopsis, CAPS markers, MONOPTEROS gene, physical map, RFLP markers, YAC contig.


Genomics ◽  
1995 ◽  
Vol 29 (3) ◽  
pp. 665-678 ◽  
Author(s):  
ERIC F.P.M. SCHOENMAKERS ◽  
JAN M.W. GEURTS ◽  
PATRICK F.J. KOOLS ◽  
RAF MOLS ◽  
CHRISTEL HUYSMANS ◽  
...  

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Shoko Saji ◽  
Yosuke Umehara ◽  
Baltazar A. Antonio ◽  
Hiroko Yamane ◽  
Hiroshi Tanoue ◽  
...  

Genome ◽  
1999 ◽  
Vol 42 (2) ◽  
pp. 330-337 ◽  
Author(s):  
Ikuo Ashikawa ◽  
Nori Kurata ◽  
Shoko Saji ◽  
Yosuke Umehara ◽  
Takuji Sasaki

To refine the current physical map of rice, we have established a restriction fragment fingerprinting method for identifying overlap between pairs of rice yeast artificial chromosome (YAC) clones and defining the physical arrangement of YACs within contiguous fragments (contigs). In this method, Southern blots of rice YAC DNAs digested with a restriction endonuclease are probed with a rice microsatellite probe, (GGC)5. The probe produces a unique fingerprint profile characteristic of each YAC clone. The profile is then digitized, processed in a computer, and a statistic that represents the degree of overlap between two YACs is calculated. The statistics have been used to detect overlaps among YAC clones, thereby filling a gap between two neighbouring contigs and organizing overlapping rice YAC clones into contiguous fragments. We applied this method to rearranging YACs that had previously been assigned to rice chromosome 6 by anchoring with RFLP markers.Key words: fingerprinting, rice, YAC, genome, physical map.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 665-674 ◽  
Author(s):  
A Kuspa ◽  
W F Loomis

Abstract A set of 147 Dictyostelium discoideum strains was constructed by random integration of a vector containing rare restriction sites. The strains were generated by transformation using restriction enzyme-mediated integration (REMI) which results in the integration of linear DNA fragments into randomly distributed genomic restriction sites. Restriction fragment length polymorphism (RFLP) was generated in a single genomic site in each strain. These REMI-RFLP strains were used to confirm gene linkages previously supported by two other physical mapping techniques: yeast artificial chromosome (YAC) contig construction, and megabase-scale restriction mapping. New linkages were uncovered when two or more hybridization probes identified the same RFLP fragments. Probes for 100 genes have marked 53% of the RFLPs, representing greater than 22 Mb of the 40 Mb Dictyostelium genome. Alignment of these and other large fragments along each chromosome should lead to a complete physical map of the Dictyostelium genome.


Sign in / Sign up

Export Citation Format

Share Document