rice chromosome
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 18)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Noritoshi Inagaki ◽  
Hidenori Asami ◽  
Hideyuki Hirabayashi ◽  
Akira Uchino ◽  
Toshiyuki Imaizumi ◽  
...  

To maximize crop growth, crops need to capture sunlight efficiently. This property is primarily influenced by the shape of the crops such as the angle, area, and arrangement of leaves. We constructed a rice (Oryza sativa L.) inbred line that displayed an ideal transition of plant shapes in terms of sunlight receiving efficiency. During vegetative growth, this line exhibited tiller spreading with increased tiller number, which formed a parabolic antenna-like structure. The architecture probably improved light reception efficiency of individuals compared with the recurrent parent. The line achieved not only acceleration of the vegetative growth, but also significant suppression of weed growth under the canopy. The increased light reception efficiency of the line has consequently reduced the amount of incident light to the ground and supplied significant competitiveness against weeds. The spread tillers became erect from the entry of the reproductive growth phase, adaptively sustaining light reception efficiency in thicker stands. The line carries a small chromosomal segment from Oryza rufipogon Griff., a putative progenitor of Asian cultivated rice. The introduced chromosome segment had little effect on grain yield and quality. Our results shed light on potentials hidden in the wild rice chromosome segment to achieve the valuable traits.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2125
Author(s):  
Ester Sales ◽  
Eva Miedes ◽  
Luis Marqués

In temperate areas, rice deals with low temperatures that can affect plant growth and crop yield. Rapid germination is required for adequate plant establishment in the field, therefore obtaining cultivars that maintain this phenotype under suboptimal temperature conditions is a challenge for rice breeders. Our study aimed to investigate temperature-induced expression changes in genes underlying quantitative trait loci (QTLs) associated to this trait (low temperature germinability, LTG) that were detected in a previous genome wide association study (GWAS). In the context of a breeding program for japonica rice cultivars adapted to cultivation in Spain, we obtained two biparental families of lines derived from hybridization with two cold tolerant Italian cultivars, and we have studied the effect on the LTG phenotype of introgressing these QTLs. A wide region in chromosome 3 was related to significant increases in seedling growth rate at 15 °C, although the extent of the effect depended on the analyzed family. In parallel, we studied the pattern of expression during germination at different temperatures of 10 genes located in the LTG-associated QTLs, in five japonica rice cultivars and in a biparental family of recombinant inbred lines (RILs). Cold induced changes in the expression of the 10 analyzed genes, with significant differences among genotypes. Variation in LTG phenotype was consistently associated with changes in the pattern of expression of five genes from the tagged regions in rice chromosome 3, which encoded for enzymes implicated in phytohormone metabolism (OsFBK12, Os3Bglu6), oxidative stress (SPL35, OsSRO1c) and Mn homeostasis maintenance (OsMTP8.1). Differential expression induced by cold in two regulatory genes (Os02g0824000 and Os06g06400) also contributed to explain low temperature tolerance during rice germination. In conclusion, introgression in defective cultivars of favorable alleles for these genes would contribute to the genetic improvement of LTG in japonica rice varieties.


2021 ◽  
Author(s):  
Wenting Xu ◽  
Hanwen Zhang ◽  
Yuchen Zhang ◽  
Rong Li ◽  
Litao Yang

Abstract Efficient, accurate molecular characterization of genetically modified (GM) organisms is challenging, especially for novel transgenic products of cisgenesis/intragenesis transferred with genes/elements of recipient species. Herein, GM rice event G281, involving transfer with native promoters and an RNA interference (RNAi) expression cassette in a process similar to intragenesis, was subjected to molecular characterization using paired-end whole genome sequencing (PE-WGS). The results showed that transgenes integrated at rice chromosome 3 locus 16,439,674 included a 36 bp deletion of rice genomic DNA, and the whole integration contained two copies of the complete transfer DNA (T-DNA) in a head-to-head arrangement. No unintended insertion or backbone sequence of the transformed plasmid were observed at the whole genome level. Molecular characterization of the G281 event will assist risk assessment and application for a commercial license. Additionally, the findings demonstrate the applicability of PE-WGS for molecular characterization of cisgenesis/intragenesis crops.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

AbstractRice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness, grain length and width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by higher temperature. Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to higher temperature.


2021 ◽  
Vol 22 (14) ◽  
pp. 7593
Author(s):  
Manatchanok Kongdin ◽  
Bancha Mahong ◽  
Sang-Kyu Lee ◽  
Su-Hyeon Shim ◽  
Jong-Seong Jeon ◽  
...  

Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of β-glucosidases. Evaluation of previously characterized recombinant rice β-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher β-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The β-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of each of these proteins with green fluorescent protein localized near the plasma membrane and in the apoplast in tobacco leaf epithelial cells. The action of these extracellular β-glucosidases on multiple phytohormones suggests they may modulate the interactions between these phytohormones.


2021 ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

Abstract Background: Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Results: Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness and for grain length and grain width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by heat stress. Conclusions: Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to high temperature.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mitsukazu Sakata ◽  
Noriko Takano-Kai ◽  
Yuta Miyazaki ◽  
Hiroyuki Kanamori ◽  
Jianzhong Wu ◽  
...  

Postzygotic reproductive isolation maintains species integrity and uniformity and contributes to speciation by restricting the free gene flow between divergent species. In this study we identify causal genes of two Mendelian factors S22A and S22B on rice chromosome 2 inducing F1 pollen sterility in hybrids between Oryza sativa japonica-type cultivar Taichung 65 (T65) and a wild relative of rice species Oryza glumaepatula. The causal gene of S22B in T65 encodes a protein containing DUF1668 and gametophytically expressed in the anthers, designated S22B_j. The O. glumaepatula allele S22B-g, allelic to S22B_j, possesses three non-synonymous substitutions and a 2-bp deletion, leading to a frameshifted translation at the S22B C-terminal region. Transcription level of S22B-j and/or S22B_g did not solely determine the fertility of pollen grains by genotypes at S22B. Western blotting of S22B found that one major band with approximately 46 kDa appeared only at the mature stage and was reduced on semi-sterile heterozygotes at S22B, implying that the 46 kDa band may associated in hybrid sterility. In addition, causal genes of S22A in T65 were found to be S22A_j1 and S22A_j3 encoding DUF1668-containing protein. The allele of a wild rice species Oryza meridionalis Ng at S22B, designated S22B_m, is a loss-of-function allele probably due to large deletion of the gene lacking DUF1668 domain and evolved from the different lineage of O. glumaepatula. Phylogenetic analysis of DUF1668 suggested that many gene duplications occurred before the divergence of current crops in Poaceae, and loss-of-function mutations of DUF1668-containing genes represent the candidate causal genetic events contributing to hybrid incompatibilities. The duplicated DUF1668-domain gene may provide genetic potential to induce hybrid incompatibility by consequent mutations after divergence.


Author(s):  
Karma Landup Bhutia ◽  
Ernieca Lyngdoh Nongbri ◽  
Takhenchangbam Oshin Sharma ◽  
Mayank Rai ◽  
Wricha Tyagi

Sign in / Sign up

Export Citation Format

Share Document