positional cloning
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 59)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Alexander Silva ◽  
María Elker Montoya ◽  
Constanza Quintero ◽  
Juan Cuasquer ◽  
Joe Tohme ◽  
...  

Abstract Rice hoja blanca is one of the most serious diseases in rice growing areas in tropical Americas. Its causal agent is the Rice hoja blanca virus (RHBV), transmitted by the planthopper Tagosodes orizicolus Müir. Genetic resistance is the most effective and environment-friendly way of controlling the disease. So far, only one major quantitative trait locus (QTL) of Oryza sativa ssp. japonica origin, qHBV4.1, that alters incidence of the virus symptoms in two Colombian cultivars has been reported. This resistance has already started to be broken, stressing the urgent need for diversifying the resistance sources. In the present study we performed a search for new QTLs of O. sativa indica origin associated with RHBV resistance. We used four F2:3 segregating populations derived from indica resistant varieties crossed with a highly susceptible japonica pivot parent. Beside the standard method for measuring disease incidence, we developed a new method based on computer-assisted image processing to determine the affected leaf area (ALA) as a measure of symptoms severity. Based on the disease severity and incidence scores in the F3 families under greenhouse conditions, and SNP genotyping of the F2 individuals, we identified four new indica QTLs for RHBV resistance on rice chromosomes 4, 6 and 11, namely qHBV4.2WAS208, qHBV6.1PTB25, qHBV11.1 and qHBV11.2. We also confirmed the wide-range action of qHBV4.1. Among the five QTLs, qHBV4.1 and qHBV11.1 had the largest effects on incidence and severity, respectively. These results provide a more complete understanding of the genetic bases of RHBV resistance in the cultivated rice gene pool, and can be used to develop marker-aided breeding strategies to improve RHBV resistance. The power of joint- and meta- analyses allowed precise mapping and candidate genes identification, providing the basis for positional cloning of the two major QTLs qHBV4.1 and qHBV11.1.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (12) ◽  
pp. e1009980
Author(s):  
Wenfeng Zhang ◽  
Chaoying Wu ◽  
Rui Ni ◽  
Qifen Yang ◽  
Lingfei Luo ◽  
...  

The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh. Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh. Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Mike Aoun ◽  
Xiaojie Cai ◽  
Bingze Xu ◽  
Gonzalo Fernandez Lahore ◽  
Michael Yi Bonner ◽  
...  

Animal models for complex diseases are needed to position and analyze the function of interacting genes. Previous positional cloning identified Ncf1 and Clec4b to be major regulators of arthritis models in rats. Here, we investigate epistasis between Ncf1 and Clec4b, two major regulators of arthritis in rats. We find that Clec4b and Ncf1 exert an additive effect on arthritis given by their joint ability to regulate neutrophils. Both genes are highly expressed in neutrophils, together regulating neutrophil availability and their capacity to generate reactive oxygen species. Using a glycan array, we identify key ligands of Clec4b and demonstrate that Clec4b-specific stimulation triggers neutrophils into oxidative burst. Our observations highlight Clec4b as an important regulator of neutrophils and demonstrate how epistatic interactions affect the susceptibility to, and severity of, autoimmune arthritis.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 564
Author(s):  
Daniel Esmenjaud

Root-knot nematode (RKN) species are predominant pests of crops, attacking stone fruit crops Prunus spp. under Mediterranean climate conditions worldwide. Natural resistance for rootstock breeding is a control method that is gaining interest as an alternative to the highly toxic nematicides. This review first reports an outline of the root-knot nematodes parasitizing stone fruit crops and the Prunus species and rootstocks. It then describes the main sources of resistance detected among the Prunus germplasm and focuses on the major resistance genes identified and their characteristics (spectrum, durability, histological mechanism, effect of temperature, interaction with other pests and diseases, etc.). In peach, besides the RMia reference gene, the new genes PkMi and Mf, also located on chromosome 2, need to be characterized regarding their spectrum and relationship. The two other Prunus reference genes, Ma from plum (complete spectrum) and RMja from almond (more restricted spectrum), are orthologs that belong to a TIR-NB-LRR (TNL) cluster on chromosome 7. The review finally summarizes the positional cloning of the Ma gene and the characterization of its unique TNL structure, encompassing a five-times repeated post-LRR domain. Deciphering how this structure is functionally involved in Ma’s remarkable biological properties is a real challenge for the future.


2021 ◽  
Author(s):  
Harsha Mahabaleshwar ◽  
P.V. Asharani ◽  
Tricia Loo Yi Jun ◽  
Shze Yung Koh ◽  
Melissa R. Pitman ◽  
...  

SUMMARYImmigration of mesenchymal cells into the growing fin and limb buds drives distal outgrowth, with subsequent tensile forces between these cells essential for fin and limb morphogenesis. Morphogens derived from the apical domain of the fin, orientate limb mesenchyme cell polarity, migration, division and adhesion. The zebrafish mutant stomp displays defects in fin morphogenesis including blister formation and associated loss of orientation and adhesion of immigrating fin mesenchyme cells. Positional cloning of stomp identified a mutation in the gene encoding the axon guidance ligand, Slit3. We provide evidence that Slit ligands derived from immigrating mesenchyme act via Robo receptors at the Apical Ectodermal Ridge (AER) to promote release of sphingosine-1-phosphate (S1P). S1P subsequently diffuses back to the mesenchyme to promote their polarisation, orientation, positioning and adhesion to the interstitial matrix of the fin fold. We thus demonstrate coordination of the Slit-Robo and S1P signalling pathways in fin fold morphogenesis. Our work introduces a mechanism regulating the orientation, positioning and adhesion of its constituent cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuai Tian ◽  
Minghu Zhang ◽  
Jinghui Li ◽  
Shaozhe Wen ◽  
Chan Bi ◽  
...  

Sodium dodecyl sulfate-sedimentation volume is an important index to evaluate the gluten strength of common wheat and is closely related to baking quality. In this study, a total of 15 quantitative trait locus (QTL) for sodium dodecyl sulfate (SDS)-sedimentation volume (SSV) were identified by using a high-density genetic map including 2,474 single-nucleotide polymorphism (SNP) markers, which was constructed with a doubled haploid (DH) population derived from the cross between Non-gda3753 (ND3753) and Liangxing99 (LX99). Importantly, four environmentally stable QTLs were detected on chromosomes 1A, 2D, and 5D, respectively. Among them, the one with the largest effect was identified on chromosome 1A (designated as QSsv.cau-1A.1) explaining up to 39.67% of the phenotypic variance. Subsequently, QSsv.cau-1A.1 was dissected into two QTLs named as QSsv.cau-1A.1.1 and QSsv.cau-1A.1.2 by saturating the genetic linkage map of the chromosome 1A. Interestedly, favorable alleles of these two loci were from different parents. Due to the favorable allele of QSsv.cau-1A.1.1 was from the high-value parents ND3753 and revealed higher genetic effect, which explained 25.07% of the phenotypic variation, mapping of this locus was conducted by using BC3F1 and BC3F2 populations. By comparing the CS reference sequence, the physical interval of QSsv.cau-1A.1.1 was delimited into 14.9 Mb, with 89 putative high-confidence annotated genes. SSVs of different recombinants between QSsv.cau-1A.1.1 and QSsv.cau-1A.1 detected from DH and BC3F2 populations showed that these two loci had an obvious additive effect, of which the combination of two favorable loci had the high SSV, whereas recombinants with unfavorable loci had the lowest. These results provide further insight into the genetic basis of SSV and QSsv.cau-1A.1.1 will be an ideal target for positional cloning and wheat breeding programs.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2427
Author(s):  
Nastacia Adler-Berke ◽  
Yitzchak Goldenberg ◽  
Yariv Brotman ◽  
Irina Kovalski ◽  
Amit Gal-On ◽  
...  

Zucchini yellow mosaic virus (ZYMV; potyviridae) represents a major pathogen of Cucurbitaceae crops. ZYMV resistance in melon PI 414723 is conditioned by a dominant allele at the Zym locus. This resistant accession restricts viral spread and does not develop mosaic symptoms, but necrosis sometimes develops in response to inoculation. In previous studies, Zym has been mapped to linkage group II of the melon genetic map. In the present study, positional cloning of the locus was undertaken, starting from the CM-AG36 SSR marker at approximately 2 cm distance. We utilized five mapping populations that share the same resistant parent, PI 414723, and analyzed a total of 1630 offspring, to construct a high-resolution genetic map of the Zym locus. Two melon BAC libraries were used for chromosome walking and for developing new markers closer to the resistance gene by BAC-end sequencing. A BAC contig was constructed, and we identified a single BAC clone, from the ZYMV susceptible genotype MR-1, that physically encompasses the resistance gene. A second clone was isolated from another susceptible genotype, WMR 29, and the two clones were fully sequenced and annotated. Additional markers derived from the sequenced region delimited the region to 17.6 kb of a sequence that harbors a NAC-like transcription factor and, depending on the genotype, either two or three R-gene homologs with a CC-NBS-LRR structure. Mapping was confirmed by saturating the map with SNP markers using a single mapping population. The same region was amplified and sequenced also in the ZYMV resistant genotype PI 414723. Because numerous polymorphic sites were noted between genotypes, we could not associate resistance with a specific DNA polymorphism; however, this study enables molecular identification of Zym and paves the way to functional studies of this important locus.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1168
Author(s):  
María José Diéguez ◽  
Micaela López ◽  
Emiliano Altieri ◽  
María Fernanda Pergolesi ◽  
Marisol Alicia Dabove ◽  
...  

Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1762
Author(s):  
Shabarni Gupta ◽  
Justyna E. Ozimek-Kulik ◽  
Jacqueline Kathleen Phillips

The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009890
Author(s):  
Anja Bühler ◽  
Bernd M. Gahr ◽  
Deung-Dae Park ◽  
Alberto Bertozzi ◽  
Alena Boos ◽  
...  

In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart.


Sign in / Sign up

Export Citation Format

Share Document