A 2.8 megabase YAC contig spanning D8S339, which is tightly linked to the Werner syndrome locus

Genome ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 77-83
Author(s):  
R. Bruskiewich ◽  
M. Schertzer ◽  
S. Wood

A number of gene loci, including the locus for Werner syndrome (WRN), map to proximal human chromosome 8p near the genetic marker D8S339. In this report, we present a long range physical map of an approximately 2.8 megabase yeast artificial chromosome contig centred on D8S339. In this map, we localize the WRN-linked polymorphic sequence-tagged sites (STS) D8S339 and D8S1055, as well as a novel polymorphic STS, D8S2297. We also refine the positions of three known gene loci, GTF2E2, GSR, and PPP2CB, relative to the location of WRN within the map.Key words: WRN, GTF2E2, GSR, PPP2CB, physical map, human chromosome 8p.

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Shoko Saji ◽  
Yosuke Umehara ◽  
Baltazar A Antonio ◽  
Hiroko Yamane ◽  
Hiroshi Tanoue ◽  
...  

A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.Key words: physical mapping, YAC contig, rice genome, rice chromosomes.


Genomics ◽  
1993 ◽  
Vol 16 (3) ◽  
pp. 691-697 ◽  
Author(s):  
Rima Slim ◽  
Denis Le Paslier ◽  
Sylvie Compain ◽  
Jacqueline Levilliers ◽  
Pierre Ougen ◽  
...  

Genome ◽  
1996 ◽  
Vol 39 (6) ◽  
pp. 1086-1092 ◽  
Author(s):  
Christian S. Hardtke ◽  
Thomas Berleth

In the course of the isolation of the MONOPTEROS (MP) gene, required for primary root formation in Arabidopsis thaliana, a yeast artificial chromosome (YAC) contig encompassing approximately 2200 kilobases corresponding to 5.5 cM on the top arm of chromosome 1 was established. Forty-six YAC clones were characterized and 12 new restriction fragment length polymorphism (RFLP) markers are presented. Three new codominant amplified polymorphic sequence (CAPS) markers were generated that enabled high resolution genetic mapping and correlation of physical and genetic distances along the contig. The map contributes to the completion of a physical map of the Arabidopsis genome and should facilitate positional cloning of other genes in the region as well as studies on genome organization. We also present another set of 11 physically linked probes, as well as mapping data for additional RFLP markers within a broader interval of 10.4 cM. Key words : Arabidopsis, CAPS markers, MONOPTEROS gene, physical map, RFLP markers, YAC contig.


Genomics ◽  
1995 ◽  
Vol 29 (3) ◽  
pp. 665-678 ◽  
Author(s):  
ERIC F.P.M. SCHOENMAKERS ◽  
JAN M.W. GEURTS ◽  
PATRICK F.J. KOOLS ◽  
RAF MOLS ◽  
CHRISTEL HUYSMANS ◽  
...  

1995 ◽  
Vol 4 (8) ◽  
pp. 1347-1354 ◽  
Author(s):  
Robert F. Clark ◽  
Marc Cruts ◽  
Kevin M. Korenblat ◽  
Chengshi He ◽  
Christopher Talbot ◽  
...  

Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 665-674 ◽  
Author(s):  
A Kuspa ◽  
W F Loomis

Abstract A set of 147 Dictyostelium discoideum strains was constructed by random integration of a vector containing rare restriction sites. The strains were generated by transformation using restriction enzyme-mediated integration (REMI) which results in the integration of linear DNA fragments into randomly distributed genomic restriction sites. Restriction fragment length polymorphism (RFLP) was generated in a single genomic site in each strain. These REMI-RFLP strains were used to confirm gene linkages previously supported by two other physical mapping techniques: yeast artificial chromosome (YAC) contig construction, and megabase-scale restriction mapping. New linkages were uncovered when two or more hybridization probes identified the same RFLP fragments. Probes for 100 genes have marked 53% of the RFLPs, representing greater than 22 Mb of the 40 Mb Dictyostelium genome. Alignment of these and other large fragments along each chromosome should lead to a complete physical map of the Dictyostelium genome.


Genome ◽  
2000 ◽  
Vol 43 (3) ◽  
pp. 427-433
Author(s):  
Ssucheng J Hsu ◽  
Robert P Erickson

Four yeast artificial chromosome (YAC) contigs, physically~8 Mb, have been constructed spanning a 10-cM region on mouse proximal chromosome 18 and include the sites of 21 known genes, including those near the twirler (Tw) locus and the recently isolated Niemann-Pick type C1 (npc1) gene, formerly designated as the spm locus. This physical map consists of 49 YAC clones that cover roughly 15% of the chromosome. The physical order of 38 microsatellite sequence-tagged sites (STSs) could be assembled and confirmed based on their presence or absence in individual YACs, from proximal D18Mit109 through distal D18Mit68. These YACs provide an important resource for the further characterization and identification of known and unknown genes. The physical map has been integrated with our previously published genetic linkage map and showed an average genetic to physical distance of cM/Mb > 1.1.Key words: Mus musculus, chromosome 18, YAC contigs, physical mapping, Niemann-Pick type C1.


Sign in / Sign up

Export Citation Format

Share Document