scholarly journals Transection of the ventral hippocampal commissure impairs spatial reference but not contextual or spatial working memory

2021 ◽  
Vol 29 (1) ◽  
pp. 29-37
Author(s):  
Jake T. Jordan ◽  
Yi Tong ◽  
Carolyn L. Pytte

Plasticity is a neural phenomenon in which experience induces long-lasting changes to neuronal circuits and is at the center of most neurobiological theories of learning and memory. However, too much plasticity is maladaptive and must be balanced with substrate stability. Area CA3 of the hippocampus provides such a balance via hemispheric lateralization, with the left hemisphere dominant in providing plasticity and the right specialized for stability. Left and right CA3 project bilaterally to CA1; however, it is not known whether this downstream merging of lateralized plasticity and stability is functional. We hypothesized that interhemispheric convergence of input from these pathways is essential for integrating spatial memory stored in the left CA3 with navigational working memory facilitated by the right CA3. To test this, we severed interhemispheric connections between the left and right hippocampi in mice and assessed learning and memory. Despite damage to this major hippocampal fiber tract, hippocampus-dependent navigational working memory and short- and long-term memory were both spared. However, tasks that required the integration of information retrieved from memory with ongoing navigational working memory and navigation were impaired. We propose that one function of interhemispheric communication in the mouse hippocampus is to integrate lateralized processing of plastic and stable circuits to facilitate memory-guided spatial navigation.

2018 ◽  
Author(s):  
Jake T. Jordan ◽  
Yi Tong ◽  
Carolyn L. Pytte

AbstractPlasticity is a neural phenomenon in which experience induces long-lasting changes to neuronal circuits and is at the center of most neurobiological theories of learning and memory. However, too much plasticity is maladaptive and must be balanced with substrate stability. Area CA3 of the hippocampus is lateralized with the left hemisphere dominant in plasticity and the right specialized for stability. Left and right CA3 project bilaterally to CA1; however, it is not known whether this downstream merging of lateralized plasticity and stability is functional. We hypothesized that interhemispheric integration of input from these pathways is essential for integrating spatial memory stored in the left CA3 with spatial working memory facilitated by the right CA3. To test this, we severed interhemispheric connections between the left and right hippocampi in mice and assessed learning and memory. Despite damage to this major hippocampal fiber tract, hippocampus-dependent spatial working memory and short- and long-term memory were both spared. However, tasks that required the integration of information retrieved from memory with ongoing spatial working memory and navigation were impaired. We propose that one function of interhemispheric communication in the mouse hippocampus is to integrate lateralized processing of plastic and stable circuits to facilitate memory-guided spatial navigation.


Author(s):  
Ian Neath ◽  
Jean Saint-Aubin ◽  
Tamra J. Bireta ◽  
Andrew J. Gabel ◽  
Chelsea G. Hudson ◽  
...  

1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


2020 ◽  
pp. 282-310
Author(s):  
Patricia A. Reuter-Lorenz ◽  
Alexandru D. Iordan

This chapter reviews evidence from behavioural and cognitive neuroscience research that supports a unitary view of memory whereby working memory and long-term memory phenomena arise from representations and processes that are largely shared when remembering over the short or long term. Using ‘false working memories’ as a case study, it highlights several paradoxes that cannot be explained by a multisystem view of memory in which working memory and long-term memory are structurally distinct. Instead, it is posited that behavioural memory effects over the short and long term relating to semantic processing, modality/domain-specificity, dual-task interference, strategic processing, and so on arise from the differences in activational states and availability of different representational features (e.g. sensory/perceptual, associative, action-based) that vary in their time courses and activity, attentional priority, and susceptibility to interference. Cognitive neuroscience evidence primarily from brain imaging methodologies that support this view is reviewed.


2020 ◽  
Vol 31 (1) ◽  
pp. 147-158
Author(s):  
Amanda E Hernan ◽  
J Matthew Mahoney ◽  
Willie Curry ◽  
Seamus Mawe ◽  
Rod C Scott

Abstract Spatial working memory (SWM) is a central cognitive process during which the hippocampus and prefrontal cortex (PFC) encode and maintain spatial information for subsequent decision-making. This occurs in the context of ongoing computations relating to spatial position, recall of long-term memory, attention, among many others. To establish how intermittently presented information is integrated with ongoing computations we recorded single units, simultaneously in hippocampus and PFC, in control rats and those with a brain malformation during performance of an SWM task. Neurons that encode intermittent task parameters are also well modulated in time and incorporated into a functional network across regions. Neurons from animals with cortical malformation are poorly modulated in time, less likely to encode task parameters, and less likely to be integrated into a functional network. Our results implicate a model in which ongoing oscillatory coordination among neurons in the hippocampal–PFC network describes a functional network that is poised to receive sensory inputs that are then integrated and multiplexed as working memory. The background temporal modulation is systematically altered in disease, but the relationship between these dynamics and behaviorally relevant firing is maintained, thereby providing potential targets for stimulation-based therapies.


2001 ◽  
Vol 24 (1) ◽  
pp. 147-148 ◽  
Author(s):  
Niels A. Taatgen

The limited capacity for unrelated things is a fact that needs to be explained by a general theory of memory, rather than being itself used as a means of explaining data. A pure storage capacity is therefore not the right assumption for memory research. Instead an explanation is needed of how capacity limitations arise from the interaction between the environment and the cognitive system. The ACT-R architecture, a theory without working memory but a long-term memory based on activation, may provide such an explanation.


Author(s):  
Suchada Tantisatirapong ◽  
Pargorn Puttapirat ◽  
Wongwit Senavongse ◽  
Theerasak Chanwimalueang

Cognitive aging is one of the main public health concerns, often involving a decline in memory and decision-making abilities as people age. Cognitive training games have been widely used to improve working memory as well as enhancing short and long-term memory. In this study, we aim to develop a cognitive training game based on the Thai environment and speech recognition technology. The designed cognitive training tasks were evaluated by performing electroencephalography (EEG) on six elderly volunteers, who passed the Thai mental state examination. The participants were instructed to memorize a series of pictures and calculate simple math questions. The EEG signals of the participants were recorded during training. The participants engaged in four cognitive training tasks over three trials. An increase in training scores was found to be related to a rise in three EEG power spectrum bands: theta, alpha, and beta. Participants expressed the highest average level of satisfaction towards the easiest tasks in the four cognitive training games. This implies that when performing an easy task, an increase in the power spectral density of three EEG bands tends to occur. As a result, the proposed cognitive training game could leverage the working memory of the Thai elderly. The game design can be enhanced by integrating human-based interactive tasks, such as handwriting and eye movements. Its replication on a larger scale should be assessed in the future.


2018 ◽  
Author(s):  
Florian Fiebig ◽  
Pawel Herman ◽  
Anders Lansner

AbstractWorking memory (WM) is a key component of human memory and cognition. Computational models have been used to study the underlying neural mechanisms, but neglected the important role of short- and long-term memory interactions (STM, LTM) for WM. Here, we investigate these using a novel multi-area spiking neural network model of prefrontal cortex (PFC) and two parieto-temporal cortical areas based on macaque data. We propose a WM indexing theory that explains how PFC could associate, maintain and update multi-modal LTM representations. Our simulations demonstrate how simultaneous, brief multi-modal memory cues could build a temporary joint memory representation as an “index” in PFC by means of fast Hebbian synaptic plasticity. This index can then reactivate spontaneously and thereby reactivate the associated LTM representations. Cueing one LTM item rapidly pattern-completes the associated un-cued item via PFC. The PFC-STM network updates flexibly as new stimuli arrive thereby gradually over-writing older representations.


2020 ◽  
Vol 73 (8) ◽  
pp. 1150-1161
Author(s):  
Dandan Zhou ◽  
Jie Luo ◽  
Zizhen Yi ◽  
Yun Li ◽  
Shuting Yang ◽  
...  

Spatial-numerical and spatial-positional associations have been well documented in the domains of numerical cognition and working memory, respectively. However, such associations are typically calculated by directly comparing (e.g., subtracting) left- versus right-hand responses; it remains an open question whether such associations reside in each hand individually, or are exclusively localised in one of the two hands. We conducted six experiments to investigate the hand-lateralization of both spatial-numerical and spatial-positional associations. All experiments revealed that the spatial associations stemmed from left-hand responses, irrespective of the handedness of the subjects, but with the exception of the magnitude comparison task (Experiments 5 and 6). We propose that the hemispheric lateralization of the tasks in combination with the task-relevance of spatial associations can explain this pattern. More generally, we suggest that the contributions of left and right hands require more attention in spatial-numerical and spatial-positional research.


Sign in / Sign up

Export Citation Format

Share Document