functional network
Recently Published Documents


TOTAL DOCUMENTS

996
(FIVE YEARS 434)

H-INDEX

63
(FIVE YEARS 10)

2022 ◽  
Vol 15 ◽  
Author(s):  
Wenzhuo Cui ◽  
Shanshan Wang ◽  
Boyu Chen ◽  
Guoguang Fan

Functional magnetic resonance imaging (fMRI) studies have suggested that there is a functional reorganization of brain areas in patients with sensorineural hearing loss (SNHL). Recently, graph theory analysis has brought a new understanding of the functional connectome and topological features in central neural system diseases. However, little is known about the functional network topology changes in SNHL patients, especially in infants. In this study, 34 infants with profound bilateral congenital SNHL and 28 infants with normal hearing aged 11–36 months were recruited. No difference was found in small-world parameters and network efficiency parameters. Differences in global and nodal topologic organization, hub distribution, and whole-brain functional connectivity were explored using graph theory analysis. Both normal-hearing infants and SNHL infants exhibited small-world topology. Furthermore, the SNHL group showed a decreased nodal degree in the bilateral thalamus. Six hubs in the SNHL group and seven hubs in the normal-hearing group were identified. The left middle temporal gyrus was a hub only in the SNHL group, while the right parahippocampal gyrus and bilateral temporal pole were hubs only in the normal-hearing group. Functional connectivity between auditory regions and motor regions, between auditory regions and default-mode-network (DMN) regions, and within DMN regions was found to be decreased in the SNHL group. These results indicate a functional reorganization of brain functional networks as a result of hearing loss. This study provides evidence that functional reorganization occurs in the early stage of life in infants with profound bilateral congenital SNHL from the perspective of complex networks.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Cláudia Régio Brambilla ◽  
Tanja Veselinović ◽  
Ravichandran Rajkumar ◽  
Jörg Mauler ◽  
Andreas Matusch ◽  
...  

AbstractCurrently, the metabotropic glutamate receptor 5 (mGluR5) is the subject of several lines of research in the context of neurology and is of high interest as a target for positron-emission tomography (PET). Here, we assessed the feasibility of using [11C]ABP688, a specific antagonist radiotracer for an allosteric site on the mGluR5, to evaluate changes in glutamatergic neurotransmission through a mismatch-negativity (MMN) task as a part of a simultaneous and synchronized multimodal PET/MR-EEG study. We analyzed the effect of MMN by comparing the changes in nondisplaceable binding potential (BPND) prior to (baseline) and during the task in 17 healthy subjects by applying a bolus/infusion protocol. Anatomical and functional regions were analyzed. A small change in BPND was observed in anatomical regions (posterior cingulate cortex and thalamus) and in a functional network (precuneus) after the start of the task. The effect size was quantified using Kendall’s W value and was 0.3. The motor cortex was used as a control region for the task and did not show any significant BPND changes. There was a significant ΔBPND between acquisition conditions. On average, the reductions in binding across the regions were - 8.6 ± 3.2% in anatomical and - 6.4 ± 0.5% in the functional network (p ≤ 0.001). Correlations between ΔBPND and EEG latency for both anatomical (p = 0.008) and functional (p = 0.022) regions were found. Exploratory analyses suggest that the MMN task played a role in the glutamatergic neurotransmission, and mGluR5 may be indirectly modulated by these changes.


2022 ◽  
Vol 13 ◽  
Author(s):  
Chunhua Xing ◽  
Yu-Chen Chen ◽  
Song’an Shang ◽  
Jin-Jing Xu ◽  
Huiyou Chen ◽  
...  

Aim: This study aimed to investigate abnormal static and dynamic functional network connectivity (FNC) and its association with cognitive function in patients with presbycusis.Methods: In total, 60 patients with presbycusis and 60 age-, sex-, and education-matched healthy controls (HCs) underwent resting-state functional MRI (rs-fMRI) and cognitive assessments. Group independent component analysis (ICA) was carried out on the rs-fMRI data, and eight resting-state networks (RSNs) were identified. Static and dynamic FNCs (sFNC and dFNC) were then constructed to evaluate differences in RSN connectivity between the patients with presbycusis and the HCs. Furthermore, the correlations between these differences and cognitive scores were analyzed.Results: Patients with presbycusis had differences in sFNC compared with HCs, mainly reflected in decreased sFNC in the default mode network (DMN)-left frontoparietal network (LFPN) and attention network (AN)-cerebellum network (CN) pairs, but they had increased sFNC in the auditory network (AUN) between DMN domains. The decreased sFNC in the DMN-LFPN pair was negatively correlated with their TMT-B score (r = –0.441, p = 0.002). Patients with presbycusis exhibited aberrant dFNCs in State 2 and decreased dFNCs between the CN and AN and the visual network (VN). Moreover, the presbycusis group had a shorter mean dwell time (MDT) and fraction time (FT) in State 3 (p = 0.0027; p = 0.0031, respectively).Conclusion: This study highlighted differences in static and dynamic functional connectivity in patients with presbycusis and suggested that FNC may serve as an important biomarker of cognitive performance since abnormal alterations can better track cognitive impairment in presbycusis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Tao Liu ◽  
Liting Liu ◽  
Hui Juan Chen ◽  
Qingqing Fu ◽  
Lili Fu ◽  
...  

Background: Betel quid dependence (BQD) is associated with abnormalities in the widespread inter-regional functional connectivity of the brain. However, no studies focused on the abnormalities in the topological organization of brain functional networks in chewers in Mainland China.Methods: In the current study, resting-state functional magnetic resonance images were acquired from 53 BQD individuals and 37 gender- and age-matched healthy controls (HCs). A functional network was constructed by calculating the Pearson correlation coefficients among 90 subregions in the human Brainnetome Atlas. The topological parameters were compared between BQD individuals and HCs.Results: The results showed that BQD individuals presented a small-world topology, but the normalized characteristic path length (λ) increased compared with HCs (0.563 ± 0.030 vs. 0.550 ± 0.027). Compared to HCs, BQ chewers showed increased betweenness centrality (Be) in the right supplementary motor area, right medial superior frontal gyrus, right paracentral lobule, right insula, left posterior cingulate gyrus, right hippocampus, right post-central gyrus, right superior parietal gyrus, and right supramarginal gyrus, while decreased Be was found in the orbitofrontal area and temporal area, which is associated with reward network, cognitive system, and default mode network. The area under the curve (AUC) value of λ displayed a positive correlation with the duration of BQ chewing (r = 0.410, p = 0.002).Conclusions: The present study revealed the disruption of functional connectome in brain areas of BQD individuals. The findings may improve our understanding of the neural mechanism of BQD from a brain functional network topological organization perspective.


Author(s):  
Jinbiao Liu ◽  
Gansheng Tan ◽  
Jixian Wang ◽  
Yina Wei ◽  
Yixuan Sheng ◽  
...  

2021 ◽  
Author(s):  
Xulin Liu ◽  
Lorraine K Tyler ◽  
James B Rowe ◽  
Kamen A Tsvetanov ◽  

Cognitive ageing is a complex process which requires multimodal approach. Neuroimaging can provide insights into brain morphology, functional organization and vascular dynamics. However, most neuroimaging studies of ageing have focused on each imaging modality separately, limiting the understanding of interrelations between processes identified by different modalities and the interpretation of neural correlates of cognitive decline in ageing. Here, we used linked independent component analysis as a data-driven multimodal approach to jointly analyze magnetic resonance imaging of grey matter density, cerebrovascular, and functional network topographies. Neuroimaging and behavioural data (n = 215) from the Cambridge Centre for Ageing and Neuroscience study were used, containing healthy subjects aged 18 to 88. In the output components, fusion was found between structural and cerebrovascular topographies in multiple components with cognitive-relevance across the lifespan. A component reflecting global atrophy with regional cerebrovascular changes and a component reflecting right frontoparietal network activity were correlated with fluid intelligence over and above age and gender. No meaningful fusion between functional network topography and structural or cerebrovascular signals was observed. We propose that integrating multiple neuroimaging modalities allows to better characterize brain pattern variability and to differentiate brain changes in healthy ageing.


2021 ◽  
Author(s):  
Rajanikant Panda ◽  
Aurore Thibaut ◽  
Ane Lopez-Gonzalez ◽  
Anira Escrichs ◽  
Mohamed Ali Bahri ◽  
...  

Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, i.e. so-called eigenmodes, were supplemented as potential markers. By analysing time-resolved functional connectivity from fMRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and fronto-parietal subcortical network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the global neuronal workspace theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Osama Siddig ◽  
Hany Gamal ◽  
Pantelis Soupios ◽  
Salaheldin Elkatatny

Abstract This paper presents the application of two artificial intelligence (AI) approaches in the prediction of total organic carbon content (TOC) in Devonian Duvernay shale. To develop and test the models, around 1250 data points from three wells were used. Each point comprises TOC value with corresponding spectral and conventional well logs. The tested AI techniques are adaptive neuro-fuzzy interference system (ANFIS) and functional network (FN) which their predictions are compared to existing empirical correlations. Out of these two methods, ANFIS yielded the best outcomes with 0.98, 0.90, and 0.95 correlation coefficients (R) in training, testing, and validation respectively, and the average errors ranged between 7 and 18%. In contrast, the empirical correlations resulted in R values less than 0.85 and average errors greater than 20%. Out of eight inputs, gamma ray was found to have the most significant impact on TOC prediction. In comparison to the experimental procedures, AI-based models produces continuous TOC profiles with good prediction accuracy. The intelligent models are developed from preexisting data which saves time and costs. Article highlights In contrast to existing empirical correlation, the AI-based models yielded more accurate TOC predictions. Out of the two AI methods used in this article, ANFIS generated the best estimations in all datasets that have been tested. The reported outcomes show the reliability of the presented models to determine TOC for Devonian shale.


2021 ◽  
Author(s):  
Jian Li ◽  
Yijun Liu ◽  
Jessica L. Wisnowski ◽  
Richard M. Leahy

The human brain is a complex, integrative and segregative network that exhibits dynamic fluctuations in activity across space and time. A canonical set of large-scale networks has been historically identified from resting-state fMRI (rs-fMRI), including the default mode, visual, somatomotor, salience, attention, and executive control. However, the methods used in identification of these networks have relied on assumptions that may inadvertently constrain their properties and consequently our understanding of the human connectome. Here we define a brain "network" as a functional component that jointly describes its spatial distribution and temporal dynamics, where neither domain suffers from unrealistic constraints. Using our recently developed BrainSync algorithm and the Nadam-Accelerated SCAlable and Robust (NASCAR) tensor decomposition, we identified twenty-three brain networks using rs-fMRI data from a large group of healthy subjects acquired by the Human Connectome Project. These networks are spatially overlapped, temporally correlated, and highly reproducible across two independent groups and sessions. We show that these networks can be clustered into six distinct functional categories and naturally form a representative functional network atlas for a healthy population. Using this atlas, we demonstrate that individuals with attention-deficit/hyperactivity disorder display disproportionate brain activity increases, relative to neurotypical subjects, in visual, auditory, and somatomotor networks concurrent with decreases in the default mode and higher-order cognitive networks. Thus, this work not only yields a highly reproducible set of spatiotemporally overlapped functional brain networks, but also provides convergent evidence that individual differences in these networks can be used to explain individual differences in neurocognitive functioning.


Sign in / Sign up

Export Citation Format

Share Document