scholarly journals Single- versus two-parameter Fisher information in quantum interferometry

2020 ◽  
Vol 102 (1) ◽  
Author(s):  
Stefan Ataman
2019 ◽  
Vol 44 (4) ◽  
pp. 431-447 ◽  
Author(s):  
Scott Monroe

In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in practice, the expected information is not typically used, as it often requires a large amount of computation. In the present research, two methods to approximate the expected information by Monte Carlo are proposed. The first method is suitable for less complex IRT models such as unidimensional models. The second method is generally applicable but is designed for use with more complex models such as high-dimensional IRT models. The proposed methods are compared to existing methods using real data sets and a simulation study. The comparisons are based on simple structure multidimensional IRT models with two-parameter logistic item models.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Chandrashekar Radhakrishnan ◽  
Ravikumar Chinnarasu ◽  
Segar Jambulingam

A two-parameter generalization of Boltzmann-Gibbs-Shannon entropy based on natural logarithm is introduced. The generalization of the Shannon-Khinchin axioms corresponding to the two-parameter entropy is proposed and verified. We present the relative entropy, Jensen-Shannon divergence measure and check their properties. The Fisher information measure, the relative Fisher information, and the Jensen-Fisher information corresponding to this entropy are also derived. Also the Lesche stability and the thermodynamic stability conditions are verified. We propose a generalization of a complexity measure and apply it to a two-level system and a system obeying exponential distribution. Using different distance measures we define the statistical complexity and analyze it for two-level and five-level system.


1966 ◽  
Vol 24 ◽  
pp. 77-90 ◽  
Author(s):  
D. Chalonge

Several years ago a three-parameter system of stellar classification has been proposed (1, 2), for the early-type stars (O-G): it was an improvement on the two-parameter system described by Barbier and Chalonge (3).


2001 ◽  
Vol 32 (3) ◽  
pp. 133-141 ◽  
Author(s):  
Gerrit Antonides ◽  
Sophia R. Wunderink

Summary: Different shapes of individual subjective discount functions were compared using real measures of willingness to accept future monetary outcomes in an experiment. The two-parameter hyperbolic discount function described the data better than three alternative one-parameter discount functions. However, the hyperbolic discount functions did not explain the common difference effect better than the classical discount function. Discount functions were also estimated from survey data of Dutch households who reported their willingness to postpone positive and negative amounts. Future positive amounts were discounted more than future negative amounts and smaller amounts were discounted more than larger amounts. Furthermore, younger people discounted more than older people. Finally, discount functions were used in explaining consumers' willingness to pay for an energy-saving durable good. In this case, the two-parameter discount model could not be estimated and the one-parameter models did not differ significantly in explaining the data.


1994 ◽  
Vol 4 (8) ◽  
pp. 1299-1310 ◽  
Author(s):  
Ralph H. Colby ◽  
Michael Rubinstein ◽  
Mohamed Daoud

Sign in / Sign up

Export Citation Format

Share Document