Optical super-resolution for two unequally bright point sources based on the fractional Hilbert transform

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Jun Xin ◽  
Yanan Li ◽  
Xiao-Ming Lu
1996 ◽  
Vol 21 (4) ◽  
pp. 281 ◽  
Author(s):  
Adolf W. Lohmann ◽  
David Mendlovic ◽  
Zeev Zalevsky

2011 ◽  
Vol 28 (1) ◽  
pp. 46-57 ◽  
Author(s):  
B. Pindor ◽  
J. S. B. Wyithe ◽  
D. A. Mitchell ◽  
S. M. Ord ◽  
R. B. Wayth ◽  
...  

AbstractBright point sources associated with extragalactic active galactic nuclei and radio galaxies are an important foreground for low-frequency radio experiments aimed at detecting the redshifted 21-cm emission from neutral hydrogen during the epoch of reionization. The frequency dependence of the synthesized beam implies that the sidelobes of these sources will move across the field of view as a function of observing frequency, hence frustrating line-of-sight foreground subtraction techniques. We describe a method for subtracting these point sources from dirty maps produced by an instrument such as the MWA. This technique combines matched filters with an iterative centroiding scheme to locate and characterize point sources in the presence of a diffuse background. Simulations show that this technique can improve the dynamic range of epoch-of-reionization maps by 2—3 orders of magnitude.


Author(s):  
Binming Liang ◽  
Xiao Huang ◽  
Jihong Zheng

Abstract Photonic crystal (PC) not only breaks through the diffraction limit of traditional lenses but also can realize super-resolution imaging. Improving the resolution is the key task of PC imaging. The main work of this paper is to use a graded-index Photonic crystal (GPC) flat lens to improve the image resolution. An air-hole type two-dimensional (2D) GPC structure based on silicon medium is proposed in this paper. Numerical simulations through RSoft reveal that when the medium in the imaging area is air, the full width at half maximum (FWHM) value of a single image reaches 0.362λ. According to the Rayleigh criterion, the images of two point sources 0.57λ apart can also be distinguished. In the imaging system composed of cedar oil and GPC flat lens, the FWHM value of a single image reaches 0.34λ. In addition, the images of multiple point sources 0.49λ apart can still be distinguished.


2020 ◽  
Author(s):  
Anish Mukherjee

The quality of super-resolution images largely depends on the performance of the emitter localization algorithm used to localize point sources. In this article, an overview of the various techniques which are used to localize point sources in single-molecule localization microscopy are discussed and their performances are compared. This overview can help readers to select a localization technique for their application. Also, an overview is presented about the emergence of deep learning methods that are becoming popular in various stages of single-molecule localization microscopy. The state of the art deep learning approaches are compared to the traditional approaches and the trade-offs of selecting an algorithm for localization are discussed.


Sign in / Sign up

Export Citation Format

Share Document