planar waveguide
Recently Published Documents


TOTAL DOCUMENTS

1464
(FIVE YEARS 141)

H-INDEX

44
(FIVE YEARS 5)

Author(s):  
Denis Zolotariov ◽  

Article introduces an extension of the approximating functions method, a particular case of the finite element method (FEM) with interpolating functions in the form of Lagrange polynomials of a special form, to solve electrodynamics problems in a planar waveguide with constant polarization in the spatial-temporal domain using the Volterra integral equation method. The main goal of the article is to expand the area of ​​applicability of this method to three-dimensional problems in a planar waveguide with constant polarization, as well as to obtain general interpolation expressions in analytical form, which will be used to construct a system of nonlinear equations for solving specific problems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahriar Farhadi ◽  
Mehdi Miri ◽  
Ali Farmani

AbstractDetection of low-index materials such as aerogels and also detection of refractive index variations in these materials is still a challenging task. Here, a high figure of merit (FOM) sensor based on plasmon-induced transparency (PIT) is proposed for the detection of aerogel refractive index changes. In the proposed PIT sensor, the transparency window in an opaque region arises from the coupling between surface plasmon polariton (SPP) mode and planar waveguide mode. By comprising sub-wavelength grating (SWG) in the planar waveguide region, the maximum of the electric field of waveguide occurs in a low index media. This facilitates detection of the aerogels when they are used as the low index material (sensing material). Application of the subwavelength grating waveguide also improves the sensitivity of the sensor by a factor of six compared to a conventional structure with a homogenous waveguide. The proposed structure has a quality factor of Q ≥ 1800, and a reflection of 86%, and can detect the refractive index changes as low as Δn = 0.002 (around n = 1.0). The lineshape, Q-factor, and resonant wavelength of the transparency spectrum can be controlled by tailoring the structural parameters. Our work also has potential application in switching, filtering, and spectral shaping.


2021 ◽  
Vol 59 (5) ◽  
Author(s):  
Cong Danh Bui ◽  
Arpan Desai ◽  
Thi Thanh Kieu Nguyen ◽  
Truong Khang Nguyen

In this paper, a fully transparent antenna comprising of an Artificial Magnetic Conductor (AMC) backed Co-planar Waveguide (CPW) fed dual-ring monopole is presented. The monopole antenna and AMC structure achieve transparency due to the use of AgHT-8 conductive oxide and Plexiglas substrate. Measured antenna performance shows an impedance bandwidth of 5.3 – 6 GHz (12.4%) in the U-NII-1 to U-NII-4 frequency band with a peak gain of 5.7 dBi which is approximately an increase of 4.5% and 3.9 dBi, respectively, as compared to the standalone antenna. The simulation and the measurement results agree well with each other which proves the validity of the proposed design. To the best of our knowledge, the proposed antenna is the first fully transparent antenna design combining a transparent radiator and a transparent AMC structure.


2021 ◽  
Vol 3 (397) ◽  
pp. 97-114
Author(s):  
A. Kleschev ◽  

Object and purpose of research. This paper obtains solutions and performs estimations of characteristics of sound reflection and scattering by ideal and elastic bodies of various shapes (analytical and non-analytical) near media interface, or underwater sonic channel, or in a planar waveguide with a solid elastic bottom. Materials and methods. The harmonic signals are investigated with the method of normal waves based on the phase velocity of signal propagation, and impulse signals related to the energy transfer are studied using the method of real and imaginary sources and scatterers based on the group velocity of propagation. Main results. The scattered sound field is calculated for ideal spheroids (elongated and compressed) at fluid – ideal medium interface. The spectrum of a scattered impulse signal is calculated for a body placed in a sonic channel. First reflected impulses are found for an ideal spheroid in a planar waveguide with anisotropic bottom. Conclusion. In the studies of diffraction characteristics of bodies at media interfaces it was found that the main contribution to scattered field is given by interference of scattered fields rather than interaction of scatterers (real or imaginary). It is shown that at long distances the spectral characteristics of the channel itself have a prevalent role. When impulse sound signals in the planar waveguide are used, it is necessary to apply the method of real and imaginary sources and scatterers based on the group velocity of sound propagation.


2021 ◽  
Author(s):  
Anthony Boucouvalas ◽  
Kostas Angelis ◽  
Konstantinos Aidinis ◽  
Min Zhan ◽  
Danshi Wang

Sign in / Sign up

Export Citation Format

Share Document