scholarly journals Graph-state representation of the toric code

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Pengcheng Liao ◽  
David L. Feder
2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Priya J. Nadkarni ◽  
Ankur Raina ◽  
Shayan Srinivasa Garani

Author(s):  
Nicolo Botteghi ◽  
Ruben Obbink ◽  
Daan Geijs ◽  
Mannes Poel ◽  
Beril Sirmacek ◽  
...  

2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Raymond Wiedmann ◽  
Lea Lenke ◽  
Matthias R. Walther ◽  
Matthias Mühlhauser ◽  
Kai Phillip Schmidt

2004 ◽  
Vol 18 (02) ◽  
pp. 233-240 ◽  
Author(s):  
HONG-YI FAN

Based on the entangled state representation and the appropriate bosonic phase operator we develop the superconducting capacitor model in the presence of a voltage bias and a current bias. In so doing, the full Hamiltonian operator theory for a superconducting barrier is established.


2010 ◽  
Vol 08 (01n02) ◽  
pp. 325-335 ◽  
Author(s):  
HARALD WUNDERLICH ◽  
MARTIN B. PLENIO

Many experiments in quantum information aim at creating graph states. Quantifying the purity of an experimentally achieved graph state could in principle be accomplished using full-state tomography. This method requires a number of measurement settings growing exponentially with the number of constituents involved. Thus, full-state tomography becomes experimentally infeasible even for a moderate number of qubits. In this paper, we present a method to estimate the purity of experimentally achieved graph states with simple measurements. The observables we consider are the stabilizers of the underlying graph. Then, we formulate the problem as: "What is the state with the least purity that is compatible with the measurement data?" We solve this problem analytically and compare the obtained bounds with results from full-state tomography for simulated data.


2017 ◽  
Vol 12 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Ashley J Cripps ◽  
Christopher Joyce ◽  
Carl T Woods ◽  
Luke S Hopper

This study compared biological maturation, anthropometric, physical and technical skill measures between talent and non-talent identified junior Australian footballers. Players were recruited from the under 16 Western Australian Football League and classified as talent (state representation; n = 25, 15.7 ± 0.3 y) or non-talent identified (non-state representation; n = 25, 15.6 ± 0.4 y). Players completed a battery of anthropometric, physical and technical skill assessments. Maturity was estimated using years from peak height velocity calculations. Binary logistic regression was used to identify the variables demonstrating the strongest association with the main effect of ‘status’. A receiver operating characteristic curve was used to assess the level of discrimination provided by the strongest model. Talent identified under 16 players were biologically older, had greater stationary and dynamic leaps and superior handball skill when compared to their non-talent identified counterparts. The strongest model of status included standing height, non-dominant dynamic vertical jump and handball outcomes (AUC = 83.4%, CI = 72.1%–95.1%). Biological maturation influences anthropometric and physical capacities that are advantageous for performance in Australian football; talent identification methods should factor biological maturation as a confound in the search for junior players who are most likely to succeed in senior competition.


Sign in / Sign up

Export Citation Format

Share Document