ordered phases
Recently Published Documents


TOTAL DOCUMENTS

631
(FIVE YEARS 76)

H-INDEX

52
(FIVE YEARS 5)

Author(s):  
Ka Hong ◽  
Elena Solana ◽  
Mauro Coduri ◽  
Clemens Ritter ◽  
Paul Attfield

Abstract A new CaFe3O5-type phase NiFe3O5 (orthorhombic Cmcm symmetry, cell parameters a = 2.89126(7), b = 9.71988(21) and c = 12.52694(27) Å) has been synthesised under pressures of 12-13 GPa at 1200 °C. NiFe3O5 has an inverse cation site distribution and reveals an interesting evolution from M2+(Fe3+ )2Fe2+O5 to Fe2+(M2+ 0.5Fe3+ 0.5)2Fe3+O5 distributions over three distinct cation sites as M2+ cation size decreases from Ca to Ni. Magnetic susceptibility measurements show successive transitions at 275, ~150, and ~20 K and neutron diffraction data reveal a series of at least three spin-ordered phases with evolving propagation vectors k = [0 0 0] [0 ky 0]  [½ ½ 0] on cooling. The rich variety of magnetically ordered phases in NiFe3O5 likely results from frustration of Goodenough-Kanamori exchange interactions between the three spin sublattices, and further interesting magnetic materials are expected to be accessible within the CaFe3O5-type family.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Wanzhong Li ◽  
Jian Sun ◽  
Chong Deng

Cadmium Zinc Telluride (CdZnTe) single crystals have been widely ultilized in various photoelectron devices such as radiation detectors and solar cells. Different types of ordered phases have also been investigated...


2022 ◽  
Vol 891 ◽  
pp. 162063
Author(s):  
Maxim G. Kostenko ◽  
Jingyu Li ◽  
Zhi Zeng ◽  
Yongsheng Zhang ◽  
Sergey V. Sharf ◽  
...  

2021 ◽  
Author(s):  
Min-Cheol Lee ◽  
Connor Occhialini ◽  
Jiarui Li ◽  
Zhihai Zhu ◽  
Nicholas Sirica ◽  
...  

Abstract We used femtosecond optical spectroscopy to study ultrafast spin and orbital ordering dynamics in the antiferromagnetic Mott insulator α-Sr2CrO4. This chromate system possesses multiple spin and orbital ordered phases, and therefore could enable us to study the unique interplay between these collective phases through their non-equilibrium response to photoexcitation. Here, by varying the pump photon energy, we selectively drove inter-site spin hopping between neighboring Cr t2g orbitals and charge transfer-type transitions between oxygen 2p and Cr eg orbitals. The resulting transient reflectivity dynamics revealed temperature-dependent anomalies across the Neel temperature for spin ordering as well as the transition temperatures linked to different types of orbital order. Our results reveal distinct relaxation timescales for spin and orbital orders in α-Sr2CrO4 and provide experimental evidence for the phase transition at TO, possibly related to antiferro-type orbital ordering.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yunbing Ran ◽  
Zheyi Zou ◽  
Bo Liu ◽  
Da Wang ◽  
Bowei Pu ◽  
...  

AbstractThe electrochemical thermodynamic and kinetic characteristics of rechargeable batteries are critically influenced by the ordering of mobile ions in electrodes or solid electrolytes. However, because of the experimental difficulty of capturing the lighter migration ion coupled with the theoretical limitation of searching for ordered phases in a constrained cell, predicting stable ordered phases involving cell transformations or at extremely dilute concentrations remains challenging. Here, a group-subgroup transformation method based on lattice transformation and Wyckoff-position splitting is employed to predict the ordered ground states. We reproduce the previously reported Li0.75CoO2, Li0.8333CoO2, and Li0.8571CoO2 phases and report a new Li0.875CoO2 ground state. Taking the advantage of Wyckoff-position splitting in reducing the number of configurations, we identify the stablest Li0.0625C6 dilute phase in Li-ion intercalated graphite. We also resolve the Li/La/vacancy ordering in Li3xLa2/3−xTiO3 (0 < x < 0.167), which explains the observed Li-ion diffusion anisotropy. These findings provide important insight towards understanding the rechargeable battery chemistry.


2021 ◽  
Author(s):  
Baruch Rosenstein ◽  
Dingping Li

Ginzburg–Landau theory is an important tool in condensed matter physics research, describing the ordered phases of condensed matter, including the dynamics, elasticity, and thermodynamics of the condensed configurations. In this systematic introduction to Ginzberg–Landau theory, both common and topological excitations are considered on the same footing (including their thermodynamics and dynamical phenomena). The role of the topological versus energetic considerations is made clear. Required mathematics (symmetry, including lattice translation, topology, and perturbative techniques) are introduced as needed. The results are illustrated using arguably the most fascinating class of such systems, high Tc superconductors subject to magnetic field. This book is an important reference for both researchers and graduate students working in condensed matter physics or can act as a textbook for those taking advanced courses on these topics.


Author(s):  
P. Kwasniak ◽  
H. Garbacz

AbstractThe overall performance of joints fabricated using the explosive welding method depends directly on the brittleness of created intermetallic phases and their cohesion with metallic substrates. In this article, we used first principles calculations to show that Sn, V, Cu, and Mg alloying elements present in Ti- and Al-based alloys have a significant influence on the elastic properties and plastic deformation ability of γ-TiAl and Ti3Al. Selected solutes exhibit diversified preferential site occupancy in bulk phases and ordered phase/metallic substrate interface regions. The largest positive effect on ductility and cleavage energy was found for Cu addition (25 pct increase in the B/G ratio), while Sn largely deteriorates cleavage resistance (up to 8 pct). The presented results reveal that further development in the explosive welding field can be reached through the design/application of new alloys composed of elements that improve the properties of the ordered phases present in the joints.


2021 ◽  
Vol 135 ◽  
pp. 107225
Author(s):  
Wanpeng Li ◽  
Cuixiu Liu ◽  
Linlin Liu ◽  
Jacob C. Huang ◽  
Wei Sun

Sign in / Sign up

Export Citation Format

Share Document