scholarly journals Ray tracing with quantum correlated photons to image a three-dimensional scene

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Yingwen Zhang ◽  
Antony Orth ◽  
Duncan England ◽  
Benjamin Sussman
GPS Solutions ◽  
2013 ◽  
Vol 18 (3) ◽  
pp. 345-354 ◽  
Author(s):  
Landon Urquhart ◽  
Felipe G. Nievinski ◽  
Marcelo C. Santos

2006 ◽  
Vol 128 (9) ◽  
pp. 945-952 ◽  
Author(s):  
Sandip Mazumder

Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.


2014 ◽  
Vol 711 ◽  
pp. 546-549
Author(s):  
Wei Lin ◽  
Wei Hwa Chiang

Taipei Top Church Auditorium is a hall primarily intended for praise and worship. A three dimensional ray tracing computer simulation was used to provide sound energy distribution on the audience area of the hall, realistic design have been performed. The volume of the hall is 24600m3, which is occupied for 2200 people and equipped the hall with acoustical curtains by modifying its acoustical characteristics. Objective measurements of impulse response are reported, and background noise control and noise isolation are also be considered in the design phase. Reinforcement system is conducted to meet all the activity for the acoustical environments.


1980 ◽  
Vol 70 (1) ◽  
pp. 79-99 ◽  
Author(s):  
V. Pereyra ◽  
W. H. K. Lee ◽  
H. B. Keller

abstract A study of two-point seismic-ray tracing problems in a heterogeneous isotropic medium and how to solve them numerically will be presented in a series of papers. In this Part 1, it is shown how a variety of two-point seismic-ray tracing problems can be formulated mathematically as systems of first-order nonlinear ordinary differential equations subject to nonlinear boundary conditions. A general numerical method to solve such systems in general is presented and a computer program based upon it is described. High accuracy and efficiency are achieved by using variable order finite difference methods on nonuniform meshes which are selected automatically by the program as the computation proceeds. The variable mesh technique adapts itself to the particular problem at hand, producing more detailed computations where they are needed, as in tracing highly curved seismic rays. A complete package of programs has been produced which use this method to solve two- and three-dimensional ray-tracing problems for continuous or piecewise continuous media, with the velocity of propagation given either analytically or only at a finite number of points. These programs are all based on the same core program, PASVA3, and therefore provide a compact and flexible tool for attacking ray-tracing problems in seismology. In Part 2 of this work, the numerical method is applied to two- and three-dimensional velocity models, including models with jump discontinuities across interfaces.


2008 ◽  
Vol 103 (10) ◽  
pp. 103515 ◽  
Author(s):  
D. Bergström ◽  
J. Powell ◽  
A. F.H. Kaplan

Sign in / Sign up

Export Citation Format

Share Document