mapping functions
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 3)

Telecom ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 390-413
Author(s):  
Stelios Prekas ◽  
Panagiotis Karkazis ◽  
Vasileios Nikolakakis ◽  
Panagiotis Trakadas

Virtualization is commonly accepted as the catalyst that would grant the internet the ability to shed the shackles of legacy technologies and evolve to its future self. In order to make this transformation feasible, unavoidable concurrent radical remodeling of all the involved counterparts is required, particularly in the context of automatically and optimally serving application requests by taking advantage of new virtualized environments and their latent capabilities. A considerable number of embedding strategies that efficiently map virtual computational and networking demands over physical resources have already been proposed in the literature, following different strategies. Among these suggested strategies, different coordination proposals have been adopted, in order to solve the node and link mapping functions. In this paper, we study the capabilities of the most popular embedding strategies, based on their coordination categorization. Our study confirms that by invoking a coordination strategy, especially the single stage one, added benefits on multiple performance layers can be achieved. Moreover, we propose a new mixed coordination algorithm, essentially creating a new category in the field of VNE coordination strategies.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2462
Author(s):  
Lihai Tan ◽  
Ting Ren ◽  
Linming Dou ◽  
Xiaohan Yang ◽  
Gaofeng Wang ◽  
...  

In this study, the triangle interpolation method for the calculation of mapping functions of plates containing an opening with arbitrary shapes is investigated with an improved method for point adjudgment during iterations. Afterwards, four kinds of openings with typical shapes are considered and the mapping functions for them are calculated, based on which the influence of calculation parameters such as iteration time and the number of terms on the accuracy of mapping function is discussed. Finally, the stress around an inverted U-shaped opening and around an arched opening under different far-field stress conditions is calculated and the effect of opening shape and lateral pressure coefficient on stress distribution and rock mechanical behaviors is further analyzed combined with the discrete element method (DEM) numerical simulation. The result shows that the stability and failure pattern of the rock mass is correlated with the stress around the opening, which is affected by the opening shape. The existence of opening also greatly reduces the enhancing influence of confining stress on rock specimen.


2021 ◽  
pp. C1-C1
Author(s):  
Ilie-Daniel Gheorghe-Pop ◽  
Nikolay Tcholtchev ◽  
Tom Ritter ◽  
Manfred Hauswirth

2021 ◽  
Vol 13 (13) ◽  
pp. 2568
Author(s):  
Di Zhang ◽  
Jiming Guo ◽  
Tianye Fang ◽  
Na Wei ◽  
Wensheng Mei ◽  
...  

Tropospheric mapping function plays a vital role in the high precision Global Navigation Satellites Systems (GNSS) data processing for positioning. However, most mapping functions are derived under the assumption that atmospheric refractivity is spherically symmetric. In this paper, the pressure, temperature, and humidity fields of ERA5 data with the highest spatio-temporal resolution available from the European Centre for Medium-range Weather Forecast (ECMWF) were utilized to compute ray-traced delays by the software WHURT. Results reveal the universal asymmetry of the hydrostatic and wet tropospheric delays. To accurately represent these highly variable delays, a new mapping function that depends on elevation and azimuth angles—Tilting Mapping Function (TMF)—was applied. The basic idea is to assume an angle between the tropospheric zenith direction and the geometric zenith direction. Ray-traced delays served as the reference values. TMF coefficients were fitted by Levenberg–Marquardt nonlinear least-squares method. Comparisons demonstrate that the TMF can improve the MF-derived slant delay’s accuracy by 73%, 54% and 29% at the 5° elevation angle, against mapping functions based on the VMF3 concept, without, with a total and separate estimation of gradients, respectively. If all coefficients of a symmetric mapping function are determined together with gradients by a least-square fit at sufficient elevation angles, the accuracy is only 6% lower than TMF. By adopting the b and c coefficients of VMF3, TMF can keep its high accuracy with less computational cost, which could be meaningful for large-scale computing.


2021 ◽  
Author(s):  
Jean-Pierre Barriot ◽  
Peng Feng

Mapping functions and gradients in GNSS and VLBI applications were introduced in the sixties and seventies to model the microwave propagation delays in the troposphere, and they were proven to be the perfect tools for these applications. In this work, we revisit the physical and mathematical basis of these tools in the context of meteorology and climate applications and propose an alternative approach for the wet delay part. This alternative approach is based on perturbation theory, where the base case is an exponential decay of the wet refractivity with altitude. The perturbation is modeled as a set of orthogonal functions in space and time, with the ability to separate eddy-scale variations of the wet refractivity.


2021 ◽  
Author(s):  
Faruk Can Durmus ◽  
Bahattin Erdogan

<p>Global Navigation Satellite Systems (GNSS) are effectively used for different applications of Geomatic Engineering. There are lots of model error sources that affect the performance of the point positioning. Especially for the Precise Point Positioning (PPP) technique, which depends on the absolute point positioning, these errors should be modelled since PPP technique utilizes un-differenced and ionosphere-free combinations. Studies about PPP technique show that the effect of tropospheric delay caused by water vapor and dry air in the troposphere, which affects GNSS signals, is an important parameter should be modelled. Total zenith delay consists of both hydrostatic and wet delay. Hydrostatic delay can be accurately estimated by using atmospheric surface pressure and height with empirical models. Although there are many empirical models currently used for the determination of the zenith wet delay, the accuracies of these models are inadequate due to the temporal and spatial variation of atmospheric water vapor. Moreover, the tropospheric delay occurs along the path of GNSS signals and the Mapping Functions (MFs) are used to convert the tropospheric signal delay along the zenith direction to the slant direction. In this study, it is aimed to measure the effect of the globally produced MFs as Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), Global Mapping Function (GMF) and Global Pressure Temperature model 2 (GPT2) for GNSS positioning accuracy. Only GPS satellite system has been taken into account. For the analysis it has planned to process approximately 294 permanent stations from Crustal Dynamics Data Information System (CDDIS) archive with Jet Propulsion Laboratory’s GipsyX v1.2 software. In order to reveal the effect of different season the GPS observations in January, April, July and October, 2018 have been obtained. The solutions were derived for different session durations as 2, 4, 6, 8, 12 and 24 hours for each global MFs and root mean square values have been estimated for each session durations.</p><p><strong>Keywords</strong>: State-of-the-Art Mapping Function, Troposphere, Precise Point Positioning, Accuracy, GipsyX</p>


Sign in / Sign up

Export Citation Format

Share Document