Parametric rotation of the principal polarization axes and other effects due to four transverse waves in a plasma

1977 ◽  
Vol 16 (3) ◽  
pp. 1297-1308 ◽  
Author(s):  
B. Chakraborty
1971 ◽  
Vol 5 (1) ◽  
pp. 107-113 ◽  
Author(s):  
C. S. Chen

An infinite, inhomogeneous electron plasma driven by a spatially uniform oscillating electric field is investigated. The multi-time perturbation method is used to analyze possible parametric excitations of transverse waves and to evaluate their growth rates. It is shown that there exist subharmonic excitations of: (1) a pair of transverse waves in an unmagnetized plasma and (2) a pair of one right and one left circularly polarized wave in a magnetoplasma. Additionally, parametric excitation of two right or two left circularly polarized waves with different frequencies can exist in a magnetoplasma. The subharmonic excitations are impossible whenever the density gradient and the applied electric field are perpendicular. However, parametric excitation is possible with all configurations.


1979 ◽  
Vol 21 (1) ◽  
pp. 183-191 ◽  
Author(s):  
K. P. Das ◽  
S. Sihi

By Whitham's method of averaged Lagrangian developed by Dysthe, two coupled nonlinear Schrödiriger equations are obtained for the evolution of the amplitude of two plane polarized transverse waves in a cold plasma, both propagating in the same direction. Relativistic corrections are included and amplitude-dependent frequency shifts are derived. It is found that two transverse waves are modulationally unstable. The relativistic terms play an important part in this instability.


2015 ◽  
Author(s):  
Alberto A. Calderon ◽  
Brian Maskew

Froude laws are inductive therefore not universally applicable. The relation between Froude and Kelvin, and Froude and Wigley are made explicit. Transonic Hull (TH) has hydrodynamic characteristics not predictable by Froude’s laws. In Transonic Hydrofield (THF) Theory TH’s 3-D triangular shape induces a submerged current - subduction effect - that replaces and substantially precludes bow wave, reducing or eliminating wave making drag growth. TH’s ability to transverse waves without diminishing their energy eliminates slam. TH’s unprecedented breakthroughs with large magnitude are: substantially no bow or stern wave; full displacement regime and near zero pitch independent of speed; linear drag-speed function with greatly reduced wave making (residual) drag; accelerations in a sea that decrease with increasing speed; no slam at any speed and sea conditions. CFD studies of TH-900 vs. Fastship and TH-4022 vs. Axe Bow 4103 shows reduction of drag from 20% to 37% with gains of weight/drag from 33% to 59%. Gains originate from much smaller residual drag. Pre-feasibility studies demonstrate that TH’s triangular waterplanes houses same contents and payloads as conventional vessels provided TH has larger length and beam. TH-1200 Strategic Lift with full payload and range has exceptional high L/D at high speed in Von-Karman-Gabrielli chart.


Sign in / Sign up

Export Citation Format

Share Document