electron density fluctuations
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 21)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 17 (01) ◽  
pp. C01018
Author(s):  
C.W. Domier ◽  
J. Dannenberg ◽  
Y. Zhu ◽  
X. Liu ◽  
J.R. Sirigiri ◽  
...  

Abstract A previous 5-channel tangential high-k scattering system is being replaced by an 8-channel, poloidal high-k scattering system on the National Spherical Torus eXperiment Upgrade (NSTX-U) device located in Princeton, NJ, USA. The 693 GHz poloidal scattering system replaces a 280 GHz tangential scattering system to study high-k electron density fluctuations on NSTX-U, thereby considerably enhancing planned turbulence physics studies by providing a measurement of the k θ -spectrum of both electron temperature gradient (ETG) and ion temperature gradient (ITG) modes. Two approaches to generating the 693 GHz probe beam are under development: an optically-pumped far-infrared (FIR) laser that generates ∼50 mW, and a compact gyrotron that can potentially generate in excess of 5 W. Large aperture optics collect radiation scattered from density fluctuations in the plasma core at 8 simultaneous scattering angles ranging from 2 to 15° corresponding to poloidal wavenumbers that extend to >40 cm−1. Steerable launch optics coupled with receiver optics mounted on a 5-axis receiver carriage allow the scattering volume to be placed radially from r/a = 0.3 out to the pedestal region (r/a ∼ 0.99) and translated horizontally as needed to satisfy wavenumber matching.


2021 ◽  
Vol 922 (2) ◽  
pp. L31
Author(s):  
Siyao Xu ◽  
David H. Weinberg ◽  
Bing Zhang

Abstract Extragalactic fast radio bursts (FRBs) have large dispersion measures (DMs) and are unique probes of intergalactic electron density fluctuations. By using the recently released First CHIME/FRB Catalog, we reexamined the structure function (SF) of DM fluctuations. It shows a large DM fluctuation similar to that previously reported in Xu & Zhang, but no clear correlation hinting toward large-scale turbulence is reproduced with this larger sample. To suppress the distortion effect from FRB distances and their host DMs, we focus on a subset of CHIME catalog with DM < 500 pc cm−3. A trend of nonconstant SF and nonzero correlation function (CF) at angular separations θ less than 10° is seen, but with large statistical uncertainties. The difference found between SF and that derived from CF at θ ≲ 10° can be ascribed to the large statistical uncertainties or the density inhomogeneities on scales on the order of 100 Mpc. The possible correlation of electron density fluctuations and inhomogeneities of density distribution should be tested when several thousands of FRBs are available.


2021 ◽  
Vol 13 (18) ◽  
pp. 3732
Author(s):  
Lung-Chih Tsai ◽  
Shin-Yi Su ◽  
Chao-Han Liu ◽  
Harald Schuh ◽  
Jens Wickert ◽  
...  

The basic theory and experimental results of amplitude scintillation from GPS/GNSS radio occultation (RO) observations on sporadic E (Es) layers are reported in this study. Considering an Es layer to be not a “thin” irregularity slab on limb viewing, we characterized the corresponding electron density fluctuations as a power-law function and applied the Ryton approximation to simulate spatial spectrum of amplitude fluctuations. The scintillation index S4 and normalized signal amplitude standard deviation S2 are calculated depending on the sampling spatial scale. The theoretical results show that both S4 and S2 values become saturated when the sampling spatial scale is less than the first Fresnel zone (FFZ), and S4 and S2 values could be underestimated and approximately proportional to the logarithm of sampled spatial wave numbers up to the FFZ wave number. This was verified by experimental analyses using the 50 Hz and de-sampled FormoSat-3/Constellation Observing System for Meteorology, Ionosphere and Climate (FS3/COSMIC) GPS RO data in the cases of weak, moderate, and strong scintillations. The results show that the measured S2 and S4 values have a very high correlation coefficient of >0.97 and a ratio of ~0.5 under both complete and undersampling conditions, and complete S4 and S2 values can be derived by dividing the measured undersampling S4 and S2 values by a factor of 0.8 when using 1-Hz RO data.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Alessio Pignalberi ◽  
Roberta Tozzi ◽  
Igino Coco ◽  
...  

AbstractThe present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE < 50 nT) and active (AE > 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude—magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy.


2021 ◽  
Author(s):  
Ciara Maguire ◽  
Eoin Carley ◽  
Pietro Zucca ◽  
Nicole Vilmer ◽  
Peter Gallagher

&lt;p&gt;The Sun produces highly dynamic and eruptive events that can drive shocks through the corona. These shocks can accelerate electrons, which result in plasma emission in the form of a type II radio burst. Despite a large number of type II radio bursts observations, the precise origin of coronal shocks is still subject to investigation. Here we present a well-observed solar eruptive event that occurred on 16 October 2015, focusing on a jet observed in the extreme ultraviolet by the SDO Atmospheric Imaging Assembly, a streamer observed in white-light by the Large Angle and&amp;#160; Spectrometric Coronagraph, and a metric type II radio burst observed by the LOw-Frequency Array (LOFAR) radio telescope. For the first time, LOFAR has interferometrically imaged the fundamental and harmonic sources of a type II radio burst and revealed that the sources did not appear to be co-spatial, as would be expected from the plasma emission mechanism. We correct for the separation between the fundamental and harmonic using a model which accounts for the scattering of radio waves by electron density fluctuations in a turbulent plasma. This allows us to show the type II radio sources were located &amp;#8764;0.5 R&lt;sub&gt;sun&lt;/sub&gt; above the jet and propagated at a speed of &amp;#8764;1000 km s&lt;sup&gt;&amp;#8722;1&lt;/sup&gt;, which was significantly faster than the jet speed of &amp;#8764;200 km s&lt;sup&gt;&amp;#8722;1&lt;/sup&gt;. This suggests that the type II burst was generated by a piston shock driven by the jet in the low corona.&lt;/p&gt;


2021 ◽  
Author(s):  
Luca Sorriso-Valvo ◽  
Francesco Carbone ◽  
Yuri Yuri Khotyaintsev ◽  
Daniel Graham ◽  
Konrad Steinvall ◽  
...  

&lt;p&gt;The recently released spacecraft potential measured by the RPW instrument onboard Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Selected intervals have been extracted to study and quantify the properties of turbulence. Empirical Mode Decomposition was used to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, additionally reducing issues typical of nonstationary time series. Results show the presence of a well defined inertial range with Kolmogorov scaling. However, the turbulence shows intermittency only in part of the samples, while other intervals have homogeneous scale-dependent fluctuations. These are observed predominantly during intervals of ion-frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to provide general context and help determine the cause for the absence of intermittency.&lt;/p&gt;


2021 ◽  
Vol 13 (4) ◽  
pp. 759
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Roberta Tozzi ◽  
Alessio Pignalberi ◽  
Michael Pezzopane ◽  
...  

In the framework of space weather, the understanding of the physical mechanisms responsible for the generation of ionospheric irregularities is particularly relevant for their effects on global positioning and communication systems. Ionospheric equatorial plasma bubbles are one of the possible irregularities. In this work, using data from the ESA Swarm mission, we investigate the scaling features of electron density fluctuations characterizing equatorial plasma bubbles. Results strongly support a turbulence character of these structures and suggest the existence of a clear link between the observed scaling properties and the value of the Rate Of change of electron Density Index (RODI). This link is discussed, and RODI is proposed as a reliable proxy for the identification of plasma bubbles.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
C. Tsironis ◽  
P. Papagiannis ◽  
F. Bairaktaris ◽  
S. I. Valvis ◽  
K. Hizanidis

In this work we study the undesired effects of electron density fluctuations (in the form of blob structures which may exist in the edge region of tokamak plasmas) to the electron-cyclotron wave propagation and current drive in connection to the efficiency of neoclassical tearing mode stabilization. Our model involves the evaluation of the driven current in the presence of density perturbations, by using a combination of a wave solver based on the transfer matrix and electromagnetic homogenization methods for the propagation part prior to and inside the region of these structures (where standard asymptotic propagation methods may not be valid due to the short-wavelength limit breakdown), with a ray tracing code including island geometry effects and current drive computation for the propagation past the perturbed region. The computed driven current is input into the modified Rutherford equation in order to estimate the consequences of the wave deformation (driven by the density fluctuations) to the mode stabilization.


Sign in / Sign up

Export Citation Format

Share Document