Spontaneous free-particle acceleration in quantum electrodynamics with a real electromagnetic zero-point field

1984 ◽  
Vol 30 (5) ◽  
pp. 2221-2226 ◽  
Author(s):  
A. Rueda
2014 ◽  
Vol 23 (09) ◽  
pp. 1450049 ◽  
Author(s):  
L. de la Peña ◽  
A. M. Cetto ◽  
A. Valdés-Hernandes

A new way of arriving at the quantum formalism is presented, based on the recognition of the reality of the random zero-point radiation field (ZPF). The quantization of both matter and radiation field is shown to emerge as a result of the permanent interaction of matter with the ZPF. Quantum mechanics (QM) is obtained both in its Schrödinger and its Heisenberg version, under certain well-defined conditions and approximations. The theory provides for an explanation of the origin of entanglement. Further, the same physical elements and hypotheses allow us to cross the doorway and go beyond QM, to the realm of (nonrelativistic) quantum electrodynamics (QED).


1984 ◽  
Vol 62 (8) ◽  
pp. 805-810 ◽  
Author(s):  
I. Brevik ◽  
H. Kolbenstvedt

The radial and azimuthal stress components of the electromagnetic zero-point field are calculated inside and outside a spherical surface dividing two media of permeabilities μ1 and μ2. The corresponding permittivities ε1 and ε2 are such that εμ = 1 everywhere. Schwinger's source theory is used. In the inside region all stress components are negative, corresponding to a negative pressure. In the outside region the signs of the angular stress components are reversed, similar to the case for the energy density.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1534
Author(s):  
Yehonatan Knoll

Cold dark-matter, as a solution to the so-called dark-matter problem, suffers from a major internal conflict: In order to dodge direct detection for so long, it must have an unobservably small (non gravitational) interaction with mundane matter, and yet it manages to ‘conspire’ with it such that, in single galaxies, its distribution can be inferred from that of mundane matter via the MOND phenomenology. This conflict is avoided if the missing, transparent component of the energy-momentum tensor is due to variations in some electromagnetic ‘zero point field’ (ZPF) which is sourced by mundane matter and contains both its advanced and retarded fields. The existence of a ZPF thus modulated by mundane matter, follows from a proper solution to the self-force problem of classical electrodynamics (CED), recently proposed by the author, which renders CED compatible with the statistical predictions of QM. The possibility that ‘dark matter’ is yet another, hitherto ignored facet of good-old classical electrodynamics, therefore seems no less plausible than it being a highly exotic and conspirative new form of matter. Tests for deciding between the two are proposed.


Sign in / Sign up

Export Citation Format

Share Document