Solvability condition for needle crystals at large undercooling in a nonlocal model of solidification

1986 ◽  
Vol 33 (1) ◽  
pp. 442-452 ◽  
Author(s):  
B. Caroli ◽  
C. Caroli ◽  
B. Roulet ◽  
J. S. Langer
1986 ◽  
Vol 47 (10) ◽  
pp. 1623-1631 ◽  
Author(s):  
B. Caroli ◽  
C. Caroli ◽  
C. Misbah ◽  
B. Roulet

Author(s):  
Robert P. Lipton ◽  
Prashant K. Jha

AbstractA nonlocal field theory of peridynamic type is applied to model the brittle fracture problem. The elastic fields obtained from the nonlocal model are shown to converge in the limit of vanishing non-locality to solutions of classic plane elastodynamics associated with a running crack. We carry out our analysis for a plate subject to mode one loading. The length of the crack is prescribed a priori and is an increasing function of time.


2018 ◽  
Vol 3 (11) ◽  
Author(s):  
Jason Reneuve ◽  
Julien Salort ◽  
Laurent Chevillard

1989 ◽  
Vol 157 ◽  
Author(s):  
P.A. Stolk ◽  
A. Polman ◽  
W.C. Sinke

ABSTRACTPulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.


1999 ◽  
Vol 14 (9) ◽  
pp. 3653-3662 ◽  
Author(s):  
K. L. Lee ◽  
H. W. Kui

Three different kinds of morphology are found in undercooled Pd80Si20, and they dominate at different undercooling regimens ΔT, defined as ΔT = T1 – Tk, where T1 is the liquidus of Pd80Si20 and Tk is the kinetic crystallization temperature. In the small undercooling regimen, i.e., for ΔT ≤ 190 K, the microstructures are typically dendritic precipitation with a eutecticlike background. In the intermediate undercooling regimen, i.e., for 190 ≤ ΔT ≤ 220 K, spherical morphologies, which arise from nucleation and growth, are identified. In addition, Pd particles are found throughout an entire undercooled specimen. In the large undercooling regimen, i.e., for ΔT ≥ 220 K, a connected structure composed of two subnetworks is found. A sharp decrease in the dimension of the microstructures occurs from the intermediate to the large undercooling regimen. Although the crystalline phases in the intermediate and the large undercooling regimens are the same, the crystal growth rate is too slow to bring about the occurrence of grain refinement. Combining the morphologies observed in the three undercooling regimens and their crystallization behaviors, we conclude that phase separation takes place in undercooled molten Pd80Si20.


Sign in / Sign up

Export Citation Format

Share Document