Steady-state two-level atomic population inversion via a quantized cavity field

1988 ◽  
Vol 38 (10) ◽  
pp. 5182-5192 ◽  
Author(s):  
Markus Lindberg ◽  
Craig M. Savage
1991 ◽  
Vol 05 (05) ◽  
pp. 797-814 ◽  
Author(s):  
V. BUŽEK ◽  
I. JEX ◽  
M. BRISUDOVÁ

We investigate the dynamics of the Jaynes-Cummings model with the cavity field initially prepared in the displaced number state. The time evolution of the atomic population inversion, squeezing of the cavity field and the emission spectra from the two-level atom are studied.


2020 ◽  
Vol 45 (2) ◽  
pp. 121-132
Author(s):  
Daniel P. Sheehan

AbstractCanonical statistical mechanics hinges on two quantities, i. e., state degeneracy and the Boltzmann factor, the latter of which usually dominates thermodynamic behaviors. A recently identified phenomenon (supradegeneracy) reverses this order of dominance and predicts effects for equilibrium that are normally associated with non-equilibrium, including population inversion and steady-state particle and energy currents. This study examines two thermodynamic paradoxes that arise from supradegeneracy and proposes laboratory experiments by which they might be resolved.


2007 ◽  
Vol 85 (10) ◽  
pp. 1071-1096 ◽  
Author(s):  
M H Naderi

In this paper, we study the influence of the intrinsic decoherence on quantum statistical properties of a generalized nonlinear interacting atom–field system, i.e., the nondegenerate two-photon f-deformed Jaynes–Cummings model governed by the Milburn equation. The model contains the nonlinearities of both the cavity–field and the atom–field coupling. Until now, very few exact solutions of nonlinear systems that include a form of decoherence have been presented. The main achievement of the present work is to find exact analytical solutions for the quantum dynamics of the nonlinear model under consideration in the presence of intrinsic decoherence. With the help of a supersymmetric transformation, we first put the model Hamiltonian into an appropriate form for treating the intrinsic decoherence. Then, by applying the superoperator technique, we find an exact solution of the Milburn equation for a nondegenerate two-photon f-deformed Jaynes–Cummings model. We use this solution to investigate the effects of the intrinsic decoherence on temporal evolution of various nonclassical properties of the system, i.e., atomic population inversion, atomic dipole squeezing, atom–field entanglement, sub-Poissonian photon statistics, cross correlation between the two modes and quadrature squeezing of the cavity field. Particularly, we compare the numerical results for three different cases of two-mode deformed, one-mode deformed, and nondeformed Jaynes–Cummings models. PACS Nos.: 42.50.Ct, 42.50.Dv, 03.65.Yz


1996 ◽  
Vol 10 (26) ◽  
pp. 1311-1322
Author(s):  
J. SEKE

The significance of the counter-rotating terms in the polyatomic Jaynes-Cummings model with cavity losses is demonstrated. Numerical results for the time evolution of the atomic population inversion and dipole moment for an initial Fock-state field with different photon numbers are presented for various cavity dampings. The appearance of new steady states for the population inversion and the mean-photon number under the influence of the counter-rotating terms is pointed out. Namely, as is shown, the presence of “virtual photons”, produced by the counter-rotating terms, leads to these effects.


Sign in / Sign up

Export Citation Format

Share Document