Supradegeneracy and the Second Law of Thermodynamics

2020 ◽  
Vol 45 (2) ◽  
pp. 121-132
Author(s):  
Daniel P. Sheehan

AbstractCanonical statistical mechanics hinges on two quantities, i. e., state degeneracy and the Boltzmann factor, the latter of which usually dominates thermodynamic behaviors. A recently identified phenomenon (supradegeneracy) reverses this order of dominance and predicts effects for equilibrium that are normally associated with non-equilibrium, including population inversion and steady-state particle and energy currents. This study examines two thermodynamic paradoxes that arise from supradegeneracy and proposes laboratory experiments by which they might be resolved.

Author(s):  
Olivier Darrigol

This chapter recounts how Boltzmann reacted to Hermann Helmholtz’s analogy between thermodynamic systems and a special kind of mechanical system (the “monocyclic systems”) by grouping all attempts to relate thermodynamics to mechanics, including the kinetic-molecular analogy, into a family of partial analogies all derivable from what we would now call a microcanonical ensemble. At that time, Boltzmann regarded ensemble-based statistical mechanics as the royal road to the laws of thermal equilibrium (as we now do). In the same period, he returned to the Boltzmann equation and the H theorem in reply to Peter Guthrie Tait’s attack on the equipartition theorem. He also made a non-technical survey of the second law of thermodynamics seen as a law of probability increase.


Author(s):  
Elliott H. Lieb ◽  
Jakob Yngvason

In our derivation of the second law of thermodynamics from the relation of adiabatic accessibility of equilibrium states, we stressed the importance of being able to scale a system's size without changing its intrinsic properties. This leaves open the question of defining the entropy of macroscopic, but unscalable systems, such as gravitating bodies or systems where surface effects are important. We show here how the problem can be overcome, in principle, with the aid of an ‘entropy meter’. An entropy meter can also be used to determine entropy functions for non-equilibrium states and mesoscopic systems.


1998 ◽  
Vol 59 (4) ◽  
pp. 619-627 ◽  
Author(s):  
M. de HAAN ◽  
C. D. GEORGE

An understanding of the mechanisms leading to the symmetry breaking of the dynamical description of a large system with respect to the direction of time is necessary, but not sufficient to ensure the finding of a functional of the state of the system that would satisfy the requirements placed by the Second Law of Thermodynamics upon the non-equilibrium entropy S.


2018 ◽  
Vol 33 (24) ◽  
pp. 1850137 ◽  
Author(s):  
Onur Siginc ◽  
Mustafa Salti ◽  
Hilmi Yanar ◽  
Oktay Aydogdu

Assuming the universe as a thermodynamical system, the second law of thermodynamics can be extended to another form including the sum of matter and horizon entropies, which is called the generalized second law of thermodynamics. The generalized form of the second law (GSL) is universal which means it holds both in non-equilibrium and equilibrium pictures of thermodynamics. Considering the universe is bounded by a dynamical apparent horizon, we investigate the nature of entropy function for the validity of GSL in the scalar–tensor–vector (STEVE) theory of gravity.


2020 ◽  
Author(s):  
Miloslav Pekař

Autocatalytic reactions are in a certain contrast with the linear algebra of reaction stoichiometry, on whose basis rate equations respecting the permanence of atoms are constructed. These mathematical models of chemical reactions are termed conservative.Using a non-equilibrium thermodynamics-based theory of chemical kinetics, this paper demonstrates how to properly introduce an autocatalytic step into a (conservative) rate equation. Further, rate equations based on chemical potentials or affinities are derived, and conditions for the consistency of rate equations with entropic inequality (the second law of thermodynamics) are illustrated.<br><div><br></div>


2008 ◽  
Vol 17 (03) ◽  
pp. 531-537 ◽  
Author(s):  
QI-REN ZHANG

We show that the conservation and the non-additivity of information, together with the additivity of entropy makes entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes in which the information is conservative and non-additive.


2021 ◽  
Author(s):  
Ananth Govind Rajan

The combined first and second law of thermodynamics for a closed system is written as dE=TdS - PdV, where E is the internal energy, S is the entropy, V is the volume, T is the temperature, and P is the pressure of the system. This equation forms the basis for understanding physical phenomena ranging from heat engines to chemical reactors to biological systems. In this work, we present a pedagogical approach to obtain the combined first and second law of thermodynamics beginning with the principles of classical statistical mechanics, thereby establishing a fundamental link between energy conservation, heat, work, and entropy. We start with Boltzmann's entropy formula and use differential calculus to establish this link. Some new aspects of this work include the use of the microcanonical ensemble, which is typically considered to be intractable, to write the partition function for a general system of matter; deriving the average of the inverse kinetic energy, which appears in the microcanonical formulation of the combined first and second law, and showing that it is equal to the inverse of the average kinetic energy; obtaining an expression for the pressure of a system involving many-body interactions; and introducing the system pressure in the combined first and second law via Clausius's virial theorem. Overall, this work informs the derivation of fundamental thermodynamic relations from an understanding of classical statistical mechanics. The material presented herein could be incorporated into senior undergraduate/graduate-level courses in statistical thermodynamics and/or molecular simulations.


Sign in / Sign up

Export Citation Format

Share Document