scholarly journals Laplacian growth phenomena with the third boundary condition: Crossover from dense structure to diffusion-limited aggregation fractal

1989 ◽  
Vol 40 (12) ◽  
pp. 7286-7291 ◽  
Author(s):  
Takashi Nagatani
Fractals ◽  
1999 ◽  
Vol 07 (01) ◽  
pp. 33-39 ◽  
Author(s):  
VINCENT FLEURY ◽  
LAURENT SCHWARTZ

A model is proposed by which the formation of the vascular network in animals proceeds via progressive penetration of the vessel ramification into a capillary mesh, by means of a laplacian growth mechanism of hydrodynamical origin. In this model, the growth of both arteries and veins follows the directions of high shear stress provoked by the blood flow on the endothelial wall of a pre-existing capillary mesh. This process is shown to be identical to the phenomenon of dendritic growth, which is responsible for the formation of such well-known patterns as dendritic crystals, lightning sparks or branching aggregates of bacteria. A number of straightforward consequences of potentially important medical and physiological interests are deduced. These include the natural and spontaneous organization of the arterial and venal trees, the spontaneous and unavoidable tropism of arteries towards veins and vice-versa, the hierarchical character of the vessels and the possibility of computerized prediction of the vascular pattern from the shape of the capillary bed.


1998 ◽  
Vol 09 (03) ◽  
pp. 433-447 ◽  
Author(s):  
A. Johansen ◽  
D. Sornette

Discrete scale invariance, which corresponds to a partial breaking of the scaling symmetry, is reflected in the existence of a hierarchy of characteristic scales l0,l0λ,l0λ2,…, where λ is a preferred scaling ratio and l0 a microscopic cut-off. Signatures of discrete scale invariance have recently been found in a variety of systems ranging from rupture, earthquakes, Laplacian growth phenomena, "animals" in percolation to financial market crashes. We believe it to be a quite general, albeit subtle phenomenon. Indeed, the practical problem in uncovering an underlying discrete scale invariance is that standard ensemble averaging procedures destroy it as if it was pure noise. This is due to the fact, that while λ only depends on the underlying physics, l0 on the contrary is realization-dependent. Here, we adapt and implement a novel so-called "canonical" averaging scheme which re-sets the l0 of different realizations to approximately the same value. The method is based on the determination of a realization-dependent effective critical point obtained from, e.g., a maximum susceptibility criterion. We demonstrate the method on diffusion limited aggregation and a model of rupture.


2020 ◽  
Vol 15 ◽  
pp. 9
Author(s):  
Razvan Teodorescu

The Laplacian Growth (LG) model is known as a universality class of scale-free aggregation models in two dimensions, characterized by classical integrability and featuring finite-time boundary singularity formation. A discrete counterpart, Diffusion-Limited Aggregation (or DLA), has a similar local growth law, but significantly different global behavior. For both LG and DLA, a proper description for the scaling properties of long-time solutions is not available yet. In this note, we outline a possible approach towards finding the correct theory yielding a regularized LG and its relation to DLA.


1985 ◽  
Vol 55 (13) ◽  
pp. 1406-1409 ◽  
Author(s):  
Robin C. Ball ◽  
Robert M. Brady ◽  
Giuseppe Rossi ◽  
Bernard R. Thompson

1990 ◽  
Vol 13 (4) ◽  
pp. 341-347 ◽  
Author(s):  
A Hansen ◽  
E. L Hinrichsen ◽  
S Roux ◽  
H. J Herrmann ◽  
L. de Arcangelis

1992 ◽  
Vol 46 (6) ◽  
pp. R3016-R3019 ◽  
Author(s):  
Stefan Schwarzer ◽  
Marek Wolf ◽  
Shlomo Havlin ◽  
Paul Meakin ◽  
H. Eugene Stanley

Sign in / Sign up

Export Citation Format

Share Document