scholarly journals Interference of a Bose-Einstein condensate in a hard-wall trap: From the nonlinear Talbot effect to the formation of vorticity

2001 ◽  
Vol 63 (4) ◽  
Author(s):  
J. Ruostekoski ◽  
B. Kneer ◽  
W. P. Schleich ◽  
G. Rempe
2016 ◽  
pp. 126-131
Author(s):  
Peter Pikhitsa ◽  
Peter Pikhitsa

A Bose-Einstein condensate of bosons with repulsion, described by the Gross-Pitaevskii equation and restricted by an impenetrable “hard wall” (either rigid or flexible) which is intended to suppress the “snake instability” inherent for dark solitons, is considered. The Bogoliubov-de Gennes equations to find the spectra of gapless Bogoliubov excitations localized near the “domain wall” and therefore split from the bulk excitation spectrum of the Bose-Einstein condensate are solved. The “domain wall” may model either the surface of liquid helium or of a strongly trapped Bose-Einstein condensate. The dispersion relations for the surface excitations are found for all wavenumbers along the surface up to the ”free-particle” behavior , the latter was shown to be bound to the “hard wall” with some “universal” energy .


2021 ◽  
Vol 126 (3) ◽  
Author(s):  
T. Dieterle ◽  
M. Berngruber ◽  
C. Hölzl ◽  
R. Löw ◽  
K. Jachymski ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Kroker ◽  
Mario Großmann ◽  
Klaus Sengstock ◽  
Markus Drescher ◽  
Philipp Wessels-Staarmann ◽  
...  

AbstractPlasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a 87Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps−1. Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


Sign in / Sign up

Export Citation Format

Share Document