Shape variation of the two-electron photoionization spectrum with photon energy growth

2005 ◽  
Vol 71 (1) ◽  
Author(s):  
E. Z. Liverts ◽  
M. Ya. Amusia ◽  
E. G. Drukarev ◽  
R. Krivec ◽  
V. B. Mandelzweig
2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


Solar Energy ◽  
2017 ◽  
Vol 155 ◽  
pp. 1300-1305 ◽  
Author(s):  
Hiroyuki Mano ◽  
Md. Mijanur Rahman ◽  
Aika Kamei ◽  
Takashi Minemoto

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Burak Guzelturk ◽  
Benjamin L. Cotts ◽  
Dipti Jasrasaria ◽  
John P. Philbin ◽  
David A. Hanifi ◽  
...  

AbstractNonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in such materials are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in colloidal semiconductor nanocrystals. Investigation of the excitation energy dependence in a core/shell system shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap of the core in the same system result in transient lattice heating that occurs on a much longer 200 picosecond timescale, dominated by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.


2019 ◽  
Vol 38 (6) ◽  
pp. 1-12 ◽  
Author(s):  
Jungdam Won ◽  
Jehee Lee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document