scholarly journals Ultracold Bose gases in time-dependent one-dimensional superlattices: Response and quasimomentum structure

2007 ◽  
Vol 76 (5) ◽  
Author(s):  
Markus Hild ◽  
Felix Schmitt ◽  
Ilona Türschmann ◽  
Robert Roth
2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Yuri Daniel van Nieuwkerk ◽  
Jörg Schmiedmayer ◽  
Fabian Essler

We consider the non-equilibrium dynamics of a weakly interacting Bose gas tightly confined to a highly elongated double well potential. We use a self-consistent time-dependent Hartree--Fock approximation in combination with a projection of the full three-dimensional theory to several coupled one-dimensional channels. This allows us to model the time-dependent splitting and phase imprinting of a gas initially confined to a single quasi one-dimensional potential well and obtain a microscopic description of the ensuing damped Josephson oscillations.


1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Xinxing Liu ◽  
Xiaoji Zhou ◽  
Wei Zhang ◽  
Thibault Vogt ◽  
Bo Lu ◽  
...  

1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


2021 ◽  
Vol 127 (4) ◽  
Author(s):  
Yinfeng Ma ◽  
Cheng Peng ◽  
Xiaoling Cui

Sign in / Sign up

Export Citation Format

Share Document