scholarly journals Multipartite fully nonlocal quantum states

2010 ◽  
Vol 81 (5) ◽  
Author(s):  
Mafalda L. Almeida ◽  
Daniel Cavalcanti ◽  
Valerio Scarani ◽  
Antonio Acín
2004 ◽  
Vol 13 (01) ◽  
pp. 75-83 ◽  
Author(s):  
J. W. MOFFAT

A possible solution to the problem of providing a spacetime description of the transmission of signals for quantum entangled states is obtained by using a bimetric spacetime structure, in which quantum entanglement measurements alter the structure of the classical relativity spacetime. A bimetric gravity theory locally has two lightcones, one which describes classical special relativity and a larger lightcone which allows light signals to communicate quantum information between entangled states, after a measurement device detects one of the entangled quantum states. This theory would remove the tension that exists between macroscopic classical, local gravity and macroscopic nonlocal quantum mechanics.


Author(s):  
Ingemar Bengtsson ◽  
Karol Zyczkowski
Keyword(s):  

1990 ◽  
Vol 51 (8) ◽  
pp. 709-722 ◽  
Author(s):  
H.P. Breuer ◽  
K. Dietz ◽  
M. Holthaus

1994 ◽  
Vol 187 (Part_1) ◽  
pp. 156-156
Author(s):  
H.-J. Unger
Keyword(s):  

Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


Author(s):  
Yiwen Chu ◽  
Mikhail D. Lukin

A common theme in the implementation of quantum technologies involves addressing the seemingly contradictory needs for controllability and isolation from external effects. Undesirable effects of the environment must be minimized, while at the same time techniques and tools must be developed that enable interaction with the system in a controllable and well-defined manner. This chapter addresses several aspects of this theme with regard to a particularly promising candidate for developing applications in both metrology and quantum information, namely the nitrogen-vacancy (NV) centre in diamond. The chapter describes how the quantum states of NV centres can be manipulated, probed, and efficiently coupled with optical photons. It also discusses ways of tackling the challenges of controlling the optical properties of these emitters inside a complex solid state environment.


Author(s):  
Klaus Morawetz

The historical development of kinetic theory is reviewed with respect to the inclusion of virial corrections. Here the theory of dense gases differs from quantum liquids. While the first one leads to Enskog-type of corrections to the kinetic theory, the latter ones are described by quasiparticle concepts of Landau-type theories. A unifying kinetic theory is envisaged by the nonlocal quantum kinetic theory. Nonequilibrium phenomena are the essential processes which occur in nature. Any evolution is built up of involved causal networks which may render a new state of quality in the course of time evolution. The steady state or equilibrium is rather the exception in nature, if not a theoretical abstraction at all.


Sign in / Sign up

Export Citation Format

Share Document