scholarly journals Violation of the area law and long-range correlations in infinite-dimensional-matrix product states

2011 ◽  
Vol 83 (5) ◽  
Author(s):  
Anne E. B. Nielsen ◽  
Germán Sierra ◽  
J. Ignacio Cirac
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomotaka Kuwahara ◽  
Keiji Saito

Abstract The area law for entanglement provides one of the most important connections between information theory and quantum many-body physics. It is not only related to the universality of quantum phases, but also to efficient numerical simulations in the ground state. Various numerical observations have led to a strong belief that the area law is true for every non-critical phase in short-range interacting systems. However, the area law for long-range interacting systems is still elusive, as the long-range interaction results in correlation patterns similar to those in critical phases. Here, we show that for generic non-critical one-dimensional ground states with locally bounded Hamiltonians, the area law robustly holds without any corrections, even under long-range interactions. Our result guarantees an efficient description of ground states by the matrix-product state in experimentally relevant long-range systems, which justifies the density-matrix renormalization algorithm.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tamas Gombor ◽  
Zoltan Bajnok

Abstract We formulate and close the boundary state bootstrap for factorizing K-matrices in AdS/CFT. We found that there are no boundary degrees of freedom in the boundary bound states, merely the boundary parameters are shifted. We use this family of boundary bound states to describe the D3-D5 system for higher dimensional matrix product states and provide their asymptotic overlap formulas. In doing so we generalize the nesting for overlaps of matrix product states and Bethe states.


2012 ◽  
Vol 86 (6) ◽  
Author(s):  
T. B. Wahl ◽  
D. Pérez-García ◽  
J. I. Cirac

2015 ◽  
Vol 29 (09) ◽  
pp. 1550071 ◽  
Author(s):  
Jing-Min Zhu

For matrix product states of one-dimensional spin-1/2 chains, we investigate the properties of quantum phase transition of the proposed composite system. We find that the system has three different ferromagnetic phases, one line of the two ferromagnetic phases coexisting equally describes the paramagnetic state, and the other two lines of two ferromagnetic phases coexisting equally describe the ferrimagnetic states, while the three phases coexisting equally point describes the ferromagnetic state. Whether on phase transition lines or at the phase transition point, the system is always in an isolated mediate-coupling state, the physical quantities are discontinuous and the system has long-range correlation and has long-range classical correlation and long-range quantum correlation. We believe that our work is helpful for comprehensively and profoundly understanding the quantum phase transitions, and of some certain guidance and enlightening on the classification and measure of quantum correlation of quantum many-body systems.


2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Luke Causer ◽  
Mari Carmen Bañuls ◽  
Juan P. Garrahan

2021 ◽  
Vol 813 ◽  
pp. 136036
Author(s):  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
T. Bergauer ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ahmed Morsy ◽  
Nashat Faried ◽  
Samy A. Harisa ◽  
Kottakkaran Sooppy Nisar

AbstractIn this work, we establish an approach to constructing compact operators between arbitrary infinite-dimensional Banach spaces without a Schauder basis. For this purpose, we use a countable number of basic sequences for the sake of verifying the result of Morrell and Retherford. We also use a nuclear operator, represented as an infinite-dimensional matrix defined over the space $\ell _{1}$ℓ1 of all absolutely summable sequences. Examples of nuclear operators over the space $\ell _{1}$ℓ1 are given and used to construct operators over general Banach spaces with specific approximation numbers.


Sign in / Sign up

Export Citation Format

Share Document