scholarly journals Resonant demagnetization of a dipolar Bose-Einstein condensate in a three-dimensional optical lattice

2013 ◽  
Vol 87 (5) ◽  
Author(s):  
A. de Paz ◽  
A. Chotia ◽  
E. Maréchal ◽  
P. Pedri ◽  
L. Vernac ◽  
...  
2007 ◽  
Vol 19 (04) ◽  
pp. 371-384 ◽  
Author(s):  
AMANDINE AFTALION

In this paper, we study the Gross–Pitaevskii energy of a Bose–Einstein condensate in the presence of an optical lattice, modeled by a periodic potential V(x3) in the third direction. We study a simple case where the wells of the potential V correspond to regions where V vanishes, and are separated by small intervals of size δ where V is large. According to the intensity of V, we determine the limiting energy as δ tends to 0. In the critical case, the periodic potential approaches a sum of delta functions and the limiting energy has a contribution due to the value of the wave function between the wells. The proof relies on Gamma convergence type techniques.


1995 ◽  
Vol 50 (10) ◽  
pp. 921-930 ◽  
Author(s):  
Siegfried Grossmann ◽  
Martin Holthaus

Abstract We study Bose-Einstein condensation of comparatively small numbers of atoms trapped by a three-dimensional harmonic oscillator potential. Under the assumption that grand canonical statis­tics applies, we derive analytical expressions for the condensation temperature, the ground state occupation, and the specific heat capacity. For a gas of TV atoms the condensation temperature is proportional to N1/3, apart from a downward shift of order N-1/3. A signature of the condensation is a pronounced peak of the heat capacity. For not too small N the heat capacity is nearly discon­tinuous at the onset of condensation; the magnitude of the jump is about 6.6 N k. Our continuum approximations are derived with the help of the proper density of states which allows us to calculate finite-AT-corrections, and checked against numerical computations.


Sign in / Sign up

Export Citation Format

Share Document