delta functions
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 2)

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 469
Author(s):  
Maxim Eingorn ◽  
Ezgi Canay ◽  
Jacob M. Metcalf ◽  
Maksym Brilenkov ◽  
Alexander Zhuk

We study the effect of the cubic torus topology of the Universe on scalar cosmological perturbations which define the gravitational potential. We obtain three alternative forms of the solution for both the gravitational potential produced by point-like masses, and the corresponding force. The first solution includes the expansion of delta-functions into Fourier series, exploiting periodic boundary conditions. The second one is composed of summed solutions of the Helmholtz equation for the original mass and its images. Each of these summed solutions is the Yukawa potential. In the third formula, we express the Yukawa potentials via Ewald sums. We show that for the present Universe, both the bare summation of Yukawa potentials and the Yukawa-Ewald sums require smaller numbers of terms to yield the numerical values of the potential and the force up to desired accuracy. Nevertheless, the Yukawa formula is yet preferable owing to its much simpler structure.


2021 ◽  
Author(s):  
Anderson Luiz de Jesus ◽  
Alan C Maioli ◽  
Alexandre G M Schmidt

Abstract We investigate the scattering of a plane wave in the hyperbolic plane. We formulate the problem in terms of the Lippmann-Schwinger equation and solve it exactly for barriers modeled as Dirac delta functions running along: (i) N−horizontal lines in the Poincaré upper half-plane; (ii) N− concentric circles centered at the origin; and, (iii) a hypercircle in the Poincaré disk.


Author(s):  
Shardul Mukim ◽  
J. O’Brien ◽  
Maryam Abarashi ◽  
Mauro S Ferreira ◽  
Claudia Gomes da Rocha

Abstract Obtaining conductance spectra for a concentration of disordered impurities distributed over a nanoscale device with sensing capabilities is a well-defined problem. However, to do this inversely, i.e., extracting information about the scatters from the conductance spectrum alone, is not an easy task. In the presence of impurities, even advanced techniques of inversion can become particularly challenging. This article extends the applicability of a methodology we proposed capable of extracting composition information about a nanoscale sensing device using the conductance spectrum. The inversion tool decodes the conductance spectrum to yield the concentration and nature of the disorders responsible for conductance fluctuations in the spectra. We present the method for simple one-dimensional systems like an electron gas with randomly distributed delta functions and a linear chain of atoms. We prove the generality and robustness of the method using materials with complex electronic structures like hexagonal boron nitride, graphene nanoribbons, and carbon nanotubes. We also go on to probe distribution of disorders on the sublattice structure of the materials using the proposed inversion tool.


2021 ◽  
Vol 12 ◽  
pp. 100200
Author(s):  
Vincenzo Schiano Di Cola ◽  
Salvatore Cuomo ◽  
Gerardo Severino

2021 ◽  
Vol 58 ◽  
pp. 18-47
Author(s):  
L.I. Danilov

We prove absolute continuity of the spectrum of a periodic $n$-dimensional Schrödinger operator for $n\geqslant 4$. Certain conditions on the magnetic potential $A$ and the electric potential $V+\sum f_j\delta_{S_j}$ are supposed to be fulfilled. In particular, we can assume that the following conditions are satisfied. (1) The magnetic potential $A\colon{\mathbb{R}}^n\to{\mathbb{R}}^n$ either has an absolutely convergent Fourier series or belongs to the space $H^q_{\mathrm{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-1$, or to the space $C({\mathbb{R}}^n;{\mathbb{R}}^n)\cap H^q_{\mathrm{loc}}({\mathbb{R}}^n;{\mathbb{R}}^n)$, $2q>n-2$. (2) The function $V\colon{\mathbb{R}}^n\to\mathbb{R}$ belongs to Morrey space ${\mathfrak{L}}^{2,p}$, $p\in \big(\frac{n-1}{2},\frac{n}{2}\big]$, of periodic functions (with a given period lattice), and $$\lim\limits_{\tau\to+0}\sup\limits_{0<r\leqslant\tau}\sup\limits_{x\in{\mathbb{R}}^n}r^2\bigg(\big(v(B^n_r)\big)^{-1}\int_{B^n_r(x)}|{\mathcal{V}}(y)|^pdy\bigg)^{1/p}\leqslant C,$$ where $B^n_r(x)$ is a closed ball of radius $r>0$ centered at a point $x\in{\mathbb{R}}^n$, $B^n_r=B^n_r(0)$, $v(B^n_r)$ is volume of the ball $B^n_r$, $C=C(n,p;A)>0$. (3) $\delta_{S_j}$ are $\delta$-functions concentrated on (piecewise) $C^1$-smooth periodic hypersurfaces $S_j$, $f_j\in L^p_{\mathrm{loc}}(S_j)$, $j=1,\ldots,m$. Some additional geometric conditions are imposed on the hypersurfaces $S_j$, and these conditions determine the choice of numbers $p\geqslant n-1$. In particular, let hypersurfaces $S_j$ be $C^2$-smooth, the unit vector $e$ be arbitrarily taken from some dense set of the unit sphere $S^{n-1}$ dependent on the magnetic potential $A$, and the normal curvature of the hypersurfaces $S_j$ in the direction of the unit vector $e$ be nonzero at all points of tangency of the hypersurfaces $S_j$ and the lines $\{x_0+te\colon t\in\mathbb{R}\}$, $x_0\in{\mathbb{R}}^n$. Then we can choose the number $p>\frac{3n}{2}-3$, $n\geqslant 4$.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 244
Author(s):  
Marcoen J. T. F. Cabbolet

In general, the state of a system in which a physical quantity such as mass is distributed over space can be modeled by a function that represents the density distribution. The purpose of this paper is to introduce special functions that can be applied when in the system to be modeled, where the quantity is distributed over isolated points. For that matter, the expanded real numbers are introduced as an ordered subring of the hyperreal number field that does not contain any infinitesimals, and hyperreal delta functions are defined as special functions from the real numbers to the expanded real numbers satisfying the condition that (i) the support is a singleton, and (ii) the integral over the reals is a nonzero real number. These newly defined hyperreal delta functions, and tensor products thereof, then provide a general tool, applicable for the mathematical modeling of physical systems in which infinitely high densities occur.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1177
Author(s):  
Vasily E. Tarasov

In this paper, we use integral equations of non-integer orders to derive discrete maps with memory. Note that discrete maps with memory were not previously derived from fractional integral equations of non-integer orders. Such a derivation of discrete maps with memory is proposed for the first time in this work. In this paper, we derived discrete maps with nonlocality in time and memory from exact solutions of fractional integral equations with the Riemann–Liouville and Hadamard type fractional integrals of non-integer orders and periodic sequence of kicks that are described by Dirac delta-functions. The suggested discrete maps with nonlocality in time are derived from these fractional integral equations without any approximation and can be considered as exact discrete analogs of these equations. The discrete maps with memory, which are derived from integral equations with the Hadamard type fractional integrals, do not depend on the period of kicks.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 101
Author(s):  
Maxim Eingorn ◽  
Andrew McLaughlin ◽  
Ezgi Canay ◽  
Maksym Brilenkov ◽  
Alexander Zhuk

We investigate the influence of the chimney topology T×T×R of the Universe on the gravitational potential and force that are generated by point-like massive bodies. We obtain three distinct expressions for the solutions. One follows from Fourier expansion of delta functions into series using periodicity in two toroidal dimensions. The second one is the summation of solutions of the Helmholtz equation, for a source mass and its infinitely many images, which are in the form of Yukawa potentials. The third alternative solution for the potential is formulated via the Ewald sums method applied to Yukawa-type potentials. We show that, for the present Universe, the formulas involving plain summation of Yukawa potentials are preferable for computational purposes, as they require a smaller number of terms in the series to reach adequate precision.


2021 ◽  
pp. 2140004
Author(s):  
Ervin K. Lenzi ◽  
Luiz R. Evangelista ◽  
Rafael S. Zola ◽  
Irina Petreska ◽  
Trifce Sandev

We review and extend some results for the fractional Schrödinger equation by considering nonlocal terms or potential given in terms of delta functions. For each case, we have obtained the solution in terms of the Green function approach.


Sign in / Sign up

Export Citation Format

Share Document