scholarly journals Efficient universal quantum computation with auxiliary Hilbert space

2013 ◽  
Vol 88 (3) ◽  
Author(s):  
Wen-Dong Li ◽  
Yong-Jian Gu ◽  
Kai Liu ◽  
Yuan-Harng Lee ◽  
Yao-Zhong Zhang
Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 736
Author(s):  
Michel Planat ◽  
Raymond Aschheim ◽  
Marcelo M. Amaral ◽  
Klee Irwin

The authors previously found a model of universal quantum computation by making use of the coset structure of subgroups of a free group G with relations. A valid subgroup H of index d in G leads to a ‘magic’ state ψ in d-dimensional Hilbert space that encodes a minimal informationally complete quantum measurement (or MIC), possibly carrying a finite ‘contextual’ geometry. In the present work, we choose G as the fundamental group π 1 ( V ) of an exotic 4-manifold V, more precisely a ‘small exotic’ (space-time) R 4 (that is homeomorphic and isometric, but not diffeomorphic to the Euclidean R 4 ). Our selected example, due to S. Akbulut and R. E. Gompf, has two remarkable properties: (a) it shows the occurrence of standard contextual geometries such as the Fano plane (at index 7), Mermin’s pentagram (at index 10), the two-qubit commutation picture G Q ( 2 , 2 ) (at index 15), and the combinatorial Grassmannian Gr ( 2 , 8 ) (at index 28); and (b) it allows the interpretation of MICs measurements as arising from such exotic (space-time) R 4 s. Our new picture relating a topological quantum computing and exotic space-time is also intended to become an approach of ‘quantum gravity’.


2011 ◽  
Vol 84 (2) ◽  
Author(s):  
Daniel J. Brod ◽  
Ernesto F. Galvão

2008 ◽  
Vol 8 (10) ◽  
pp. 977-985
Author(s):  
Z.-Y. Xu ◽  
M. Feng ◽  
W.-M. Zhang

We investigate the possibility to have electron-pairs in decoherence-free subspace (DFS), by means of the quantum-dot cellular automata (QCA) and single-spin rotations, to deterministically carry out a universal quantum computation with high-fidelity. We show that our QCA device with electrons tunneling in two dimensions is very suitable for DFS encoding, and argue that our design favors a scalable quantum computation robust to collective dephasing errors.


Nature ◽  
2017 ◽  
Vol 549 (7671) ◽  
pp. 172-179 ◽  
Author(s):  
Earl T. Campbell ◽  
Barbara M. Terhal ◽  
Christophe Vuillot

Author(s):  
Valentin Kasper ◽  
Daniel González-Cuadra ◽  
Apoorva Hegde ◽  
Andy Xia ◽  
Alexandre Dauphin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document