scholarly journals Universal quantum computation and quantum error correction with ultracold atomic mixtures

Author(s):  
Valentin Kasper ◽  
Daniel González-Cuadra ◽  
Apoorva Hegde ◽  
Andy Xia ◽  
Alexandre Dauphin ◽  
...  
Author(s):  
Dongsheng Wang ◽  
Yunjiang Wang ◽  
Ningping Cao ◽  
Bei Zeng ◽  
Raymond Lafflamme

Abstract In this work, we develop the theory of quasi-exact fault-tolerant quantum (QEQ) computation, which uses qubits encoded into quasi-exact quantum error-correction codes (``quasi codes''). By definition, a quasi code is a parametric approximate code that can become exact by tuning its parameters. The model of QEQ computation lies in between the two well-known ones: the usual noisy quantum computation without error correction and the usual fault-tolerant quantum computation, but closer to the later. Many notions of exact quantum codes need to be adjusted for the quasi setting. Here we develop quasi error-correction theory using quantum instrument, the notions of quasi universality, quasi code distances, and quasi thresholds, etc. We find a wide class of quasi codes which are called valence-bond-solid codes, and we use them as concrete examples to demonstrate QEQ computation.


Author(s):  
Todd A. Brun

Quantum error correction is a set of methods to protect quantum information—that is, quantum states—from unwanted environmental interactions (decoherence) and other forms of noise. The information is stored in a quantum error-correcting code, which is a subspace in a larger Hilbert space. This code is designed so that the most common errors move the state into an error space orthogonal to the original code space while preserving the information in the state. It is possible to determine whether an error has occurred by a suitable measurement and to apply a unitary correction that returns the state to the code space without measuring (and hence disturbing) the protected state itself. In general, codewords of a quantum code are entangled states. No code that stores information can protect against all possible errors; instead, codes are designed to correct a specific error set, which should be chosen to match the most likely types of noise. An error set is represented by a set of operators that can multiply the codeword state. Most work on quantum error correction has focused on systems of quantum bits, or qubits, which are two-level quantum systems. These can be physically realized by the states of a spin-1/2 particle, the polarization of a single photon, two distinguished levels of a trapped atom or ion, the current states of a microscopic superconducting loop, or many other physical systems. The most widely used codes are the stabilizer codes, which are closely related to classical linear codes. The code space is the joint +1 eigenspace of a set of commuting Pauli operators on n qubits, called stabilizer generators; the error syndrome is determined by measuring these operators, which allows errors to be diagnosed and corrected. A stabilizer code is characterized by three parameters [[n,k,d]], where n is the number of physical qubits, k is the number of encoded logical qubits, and d is the minimum distance of the code (the smallest number of simultaneous qubit errors that can transform one valid codeword into another). Every useful code has n>k; this physical redundancy is necessary to detect and correct errors without disturbing the logical state. Quantum error correction is used to protect information in quantum communication (where quantum states pass through noisy channels) and quantum computation (where quantum states are transformed through a sequence of imperfect computational steps in the presence of environmental decoherence to solve a computational problem). In quantum computation, error correction is just one component of fault-tolerant design. Other approaches to error mitigation in quantum systems include decoherence-free subspaces, noiseless subsystems, and dynamical decoupling.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 396
Author(s):  
Gary J. Mooney ◽  
Charles D. Hill ◽  
Lloyd C. L. Hollenberg

For universal quantum computation, a major challenge to overcome for practical implementation is the large amount of resources required for fault-tolerant quantum information processing. An important aspect is implementing arbitrary unitary operators built from logical gates within the quantum error correction code. A synthesis algorithm can be used to approximate any unitary gate up to arbitrary precision by assembling sequences of logical gates chosen from a small set of universal gates that are fault-tolerantly performable while encoded in a quantum error-correction code. However, current procedures do not yet support individual assignment of base gate costs and many do not support extended sets of universal base gates. We analysed cost-optimal sequences using an exhaustive search based on Dijkstra’s pathfinding algorithm for the canonical Clifford+T set of base gates and compared them to when additionally including Z-rotations from higher orders of the Clifford hierarchy. Two approaches of assigning base gate costs were used. First, costs were reduced to T-counts by recursively applying a Z-rotation catalyst circuit. Second, costs were assigned as the average numbers of raw (i.e. physical level) magic states required to directly distil and implement the gates fault-tolerantly. We found that the average sequence cost decreases by up to 54±3% when using the Z-rotation catalyst circuit approach and by up to 33±2% when using the magic state distillation approach. In addition, we investigated observed limitations of certain assignments of base gate costs by developing an analytic model to estimate the proportion of sets of Z-rotation gates from higher orders of the Clifford hierarchy that are found within sequences approximating random target gates.


2021 ◽  
Author(s):  
Ming Gong ◽  
Xiao Yuan ◽  
Shiyu Wang ◽  
Yulin Wu ◽  
Youwei Zhao ◽  
...  

Abstract Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state, and state decoding. To address this challenge, we experimentally realise the [[5, 1, 3]] code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the [[5, 1, 3]] code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of $57.1(3)\%$ while with a high fidelity of $98.6(1)\%$ in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilizers. We further implement logical Pauli operations with a fidelity of $97.2(2)\%$ within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of $74.5(6)\%$, in total with 92 gates. Our work demonstrates each key aspect of the [[5, 1, 3]] code and verifies the viability of experimental realization of quantum error correcting codes with superconducting qubits.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 370
Author(s):  
Tefjol Pllaha ◽  
Narayanan Rengaswamy ◽  
Olav Tirkkonen ◽  
Robert Calderbank

The teleportation model of quantum computation introduced by Gottesman and Chuang (1999) motivated the development of the Clifford hierarchy. Despite its intrinsic value for quantum computing, the widespread use of magic state distillation, which is closely related to this model, emphasizes the importance of comprehending the hierarchy. There is currently a limited understanding of the structure of this hierarchy, apart from the case of diagonal unitaries (Cui et al., 2017; Rengaswamy et al. 2019). We explore the structure of the second and third levels of the hierarchy, the first level being the ubiquitous Pauli group, via the Weyl (i.e., Pauli) expansion of unitaries at these levels. In particular, we characterize the support of the standard Clifford operations on the Pauli group. Since conjugation of a Pauli by a third level unitary produces traceless Hermitian Cliffords, we characterize their Pauli support as well. Semi-Clifford unitaries are known to have ancilla savings in the teleportation model, and we explore their Pauli support via symplectic transvections. Finally, we show that, up to multiplication by a Clifford, every third level unitary commutes with at least one Pauli matrix. This can be used inductively to show that, up to a multiplication by a Clifford, every third level unitary is supported on a maximal commutative subgroup of the Pauli group. Additionally, it can be easily seen that the latter implies the generalized semi-Clifford conjecture, proven by Beigi and Shor (2010). We discuss potential applications in quantum error correction and the design of flag gadgets.


Sign in / Sign up

Export Citation Format

Share Document