scholarly journals General quantum constraints on detector noise in continuous linear measurements

2017 ◽  
Vol 95 (1) ◽  
Author(s):  
Haixing Miao
Author(s):  
Netanell Avisdris ◽  
Bossmat Yehuda ◽  
Ori Ben-Zvi ◽  
Daphna Link-Sourani ◽  
Liat Ben-Sira ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 541
Author(s):  
Xiao-Chuan Fan ◽  
Lin-Sha Ma ◽  
Li Chen ◽  
Diwakar Singh ◽  
Xiaohui Rausch-Fan ◽  
...  

(1) Background—The aim of the present study was to evaluate the correlation between the temporomandibular joint (TMJ) osseous morphology of normal skeletal pattern individuals with different dental malocclusions by using cone-beam computed tomography (CBCT). (2) Methods—The CBCT images of bilateral TMJs in 67 subjects with skeletal class I and average mandibular angle (26 males and 41 females, age range 20–49 years) were evaluated in this study. The subjects were divided into class I, class II division 1, and class II division 2 according to the molar relationship and retroclination of the maxillary incisors. Angular and linear measurements of TMJ were evaluated and the differences between the groups were statistically analyzed. (3) Results—Intragroup comparisons showed statistical differences for articular eminence inclination, the width of the glenoid fossa, the ratio of the width of the glenoid fossa to the depth of the glenoid fossa, the condylar angle, and the intercondylar angle between the malocclusion groups. The measurements of the glenoid fossa shape showed no significant difference between the left and right sides. Females showed more differences in the morphological parameters of TMJ between the three malocclusion groups than the males. (4) Conclusion—The present study revealed differences in the TMJ osseous morphology between dental class I and class II malocclusions in the normal skeletal pattern.


Primates ◽  
2021 ◽  
Author(s):  
Madeleine Geiger

AbstractHuman impact influences morphological variation in animals, as documented in many captive and domestic animal populations. However, there are different levels of human impact, and their influence on the pattern and rate of morphological variation remains unclear. This study contributes to the ongoing debate via the examination of cranial and mandibular shape and size variation and pace of change in Japanese macaques (Macaca fuscata). This species is ideal for tackling such questions because different wild, wild-provisioned, and captive populations have been monitored and collected over seven decades. Linear measurements were taken on 70 skulls from five populations, grouped into three ‘human impact groups’ (wild, wild-provisioned, and captive). This made it possible to investigate the pattern and pace of skull form changes among the human impact groups as well as over time within the populations. It was found that the overall skull shape tends to differ among the human impact groups, with captive macaques having relatively longer rostra than wild ones. Whether these differences are a result of geographic variation or variable human impact, related to nutritional supply and mechanical properties of the diet, is unclear. However, this pattern of directed changes did not seem to hold when the single captive populations were examined in detail. Although environmental conditions have probably been similar for the two examined captive populations (same captive locality), skull shape changes over the first generations in captivity were mostly different. This varying pattern, together with a consistent decrease in body size in the captive populations over generations, points to genetic drift playing a role in shaping skull shape and body size in captivity. In the captive groups investigated here, the rates of change were found to be high compared to literature records from settings featuring different degrees of human impact in different species, although they still lie in the range of field studies in a natural context. This adds to the view that human impact might not necessarily lead to particularly fast rates of change.


Sign in / Sign up

Export Citation Format

Share Document