scholarly journals Characterization of the beam scraping system of the CERN Super Proton Synchrotron

Author(s):  
Alessio Mereghetti ◽  
Francesco Cerutti ◽  
Robert B. Appleby
2015 ◽  
Vol 48 (4) ◽  
pp. 977-989 ◽  
Author(s):  
Riccardo Camattari ◽  
Vincenzo Guidi ◽  
Valerio Bellucci ◽  
Andrea Mazzolari

`Quasi-mosaicity' is an effect of anisotropy in crystals that permits one to obtain a curvature of internal crystallographic planes that would be flat otherwise. The term `quasi-mosaicity' was introduced by O. Sumbaev in 1957. The concept of `quasi-mosaicity' was then retrieved about ten years ago and was applied to steering of charged-particle beams at the Super Proton Synchrotron at CERN. Beams were deviated by exploiting channeling and volume reflection phenomena in curved crystals that show the `quasi-mosaic' effect. More recently, a crystal of this kind was installed in the Large Hadron Collider at CERN for beam collimation by the UA9 collaboration. Since 2011, another important application involving the `quasi-mosaic' effect has been the focalization of hard X-rays and soft γ-rays. In particular, the possibility of obtaining both high diffraction efficiency and the focalization of a diffracted beam has been proved, which cannot be obtained using traditional diffracting crystals. A comprehensive survey of the physical properties of `quasi-mosaicity' is reported here. Finally, experimental demonstrations for adjustable values of the `quasi-mosaic' curvature are provided.


1982 ◽  
Vol 12 (4) ◽  
pp. 307-321 ◽  
Author(s):  
M. Bourquin ◽  
R. M. Brown ◽  
Y. Chatelus ◽  
J. C. Chollet ◽  
A. Degré ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Md. Nasim ◽  
Vipul Bairathi ◽  
Mukesh Kumar Sharma ◽  
Bedangadas Mohanty ◽  
Anju Bhasin

The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS) and the CERN Super Proton Synchrotron (SPS) followed by Relativistic Heavy Ion Collider (RHIC) at Brookhaven and recently at Large Hadron Collider (LHC) at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN) 4.75 GeV to 2.76 TeV. Theϕmeson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements ofϕmeson production in heavy-ion experiments. Mainly, we discuss the energy dependence ofϕmeson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2) of proton is also discussed relative to corresponding effect onϕmesonv2.


Sign in / Sign up

Export Citation Format

Share Document