meson production
Recently Published Documents


TOTAL DOCUMENTS

1398
(FIVE YEARS 34)

H-INDEX

57
(FIVE YEARS 1)

2022 ◽  
Vol 258 ◽  
pp. 05010
Author(s):  
Mariia Mitrankova ◽  
Alexander Berdnikov ◽  
Yaroslav Berdnikov ◽  
Dmitry Kotov ◽  
Iurii Mitrankov

The measurements of light hadron production in small collision systems (such as p+Al, p+Au, d+Au, 3He+Au) may allow to explore the quarkgluon plasma formation and to determine the main hadronization mechanism in the considered collisions. Such research has become particularly crucial with the observation of the light hadrons collective behavior in p/d/3He+Au collisions at √SNN = 200 GeV and in p+Al collisions at the same energy at forward and backward rapidities. Among the large variety of light hadrons, ϕ meson is of particular interest since its production is sensitive to the presence of the quark-gluon plasma. The paper presents the comparison of the obtained experimental results on ϕ meson production to different light hadron production in p+Al and 3He+Au at √SNN = 200 GeV at midrapidity. The comparisons of ϕ meson production in p+Al, p+Au, d+Au, and 3He+Au collisions at √SNN = 200 GeV at midrapidity to theoretical models predictions (PYTHIA model and default and string melting versions of the AMPT model) are also provided. The results suggest that the QGP can be formed in p/d/3He+Au collisions, but the volume and lifetime of the produced medium might be insufficient for observation of strangeness enhancement effect. Conceivably, the main hadronization mechanism of ϕ meson production in p+Al collisions is fragmentation, while in p/d/3He+Au collisions this process occurs via coalescence.



2021 ◽  
Vol 81 (12) ◽  
Author(s):  
N. A. Abdulov ◽  
A. V. Lipatov

AbstractThe $$\Upsilon (1S)$$ Υ ( 1 S ) meson production and polarization at high energies is studied in the framework of the $$k_T$$ k T -factorization approach. Our consideration is based on the non-relativistic QCD formalism for a bound states formation and off-shell production amplitudes for hard partonic subprocesses. The direct production mechanism, feed-down contributions from radiative $$\chi _b(mP)$$ χ b ( m P ) decays and contributions from $$\Upsilon (3S)$$ Υ ( 3 S ) and $$\Upsilon (2S)$$ Υ ( 2 S ) decays are taken into account. The transverse momentum dependent (TMD) gluon densities in a proton were derived from the Ciafaloni–Catani–Fiorani–Marchesini evolution equation and the Kimber-Martin–Ryskin prescription. Treating the non-perturbative color octet transitions in terms of multipole radiation theory, we extract the corresponding non-perturbative matrix elements for $$\Upsilon (1S)$$ Υ ( 1 S ) and $$\chi _b(1P)$$ χ b ( 1 P ) mesons from a combined fit to transverse momenta distributions measured at various LHC experiments. Then we apply the extracted values to investigate the polarization parameters $$\lambda _\theta $$ λ θ , $$\lambda _\phi $$ λ ϕ and $$\lambda _{\theta \phi }$$ λ θ ϕ , which determine the $$\Upsilon (1S)$$ Υ ( 1 S ) spin density matrix. Our predictions have a reasonably good agreement with the currently available Tevatron and LHC data within the theoretical and experimental uncertainties.





2021 ◽  
Vol 2103 (1) ◽  
pp. 012135
Author(s):  
M M Mitrankova ◽  
A Ya Berdnikov ◽  
Ya A Berdnikov ◽  
D O Kotov ◽  
Iu M Mitrankov

Abstract Ultrarelativistic ion collisions provide the unique possibility to study the quark-gluon plasma, a state of matter formed in the universe at the very first moments after the Big Bang. The minimal temperature and baryon density for the quark-gluon plasma formation requires scrutiny, since the signatures of the quark-gluon plasma formation are observed in large systems (such as Au+Au) at s N N = 200 GeV , whereas collective effects in p+p collisions are not revealed. The φ-meson production measurements are considered to be a convenient tool to investigate the collision dynamics, as it is sensitive to the quark-gluon plasma effects. To interpret the nuclear modification effects and to study the process of the possible QGP formation the comparison with different theoretical models predictions is needed. This paper presents the comparison of the obtained experimental results on φ-meson production in small collision systems (p+Al, p+Au) at s N N = 200 GeV to default and string melting versions of the AMPT model and PYTHIA model predictions. The results indicate that the minimal conditions (temperature and baryon density) for a QGP formation may lie in between in p+Al and p+Au collisions.



2021 ◽  
Vol 2103 (1) ◽  
pp. 012136
Author(s):  
D M Larionova ◽  
A Ya Berdnikov ◽  
Ya A Berdnikov ◽  
D O Kotov ◽  
Iu M Mitrankov

Abstract The main goal of PHENIX expirement, located at Relativistic Heavy-ion collider, is the investigation of quark-gluon plasma (QGP). One of the aspects of the QGP study is describing the process of its hadronization. Very important contribution to understanding of hadronization process was given by discovering of anomaly large ratio of protons production to pions production (ρ/π) in Au+Au collisions in comparison to the same ratio in proton-proton collisions. This effect was called baryon puzzle and was explained in a frame of recombination model of hadronization. Although charged hadrons production has been previously studied in elementary proton-proton collisions and symmetric Au+Au collisions, it has never been investigated before in the large asymmetric collisions systems (such as Cu+Au) or the collisions of large deformed nuclei (U+U). The study of such large collisions systems allows to study features of baryon and meson production versus collision geometry and system size.





2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Gregory Gold ◽  
David A. McGady ◽  
Subodh P. Patil ◽  
Valeri Vardanyan

Abstract Particle-antiparticle pairs can be produced by background electric fields via the Schwinger mechanism provided they are unconfined. If, as in QED in (3+1)-d these particles are massive, the particle production rate is exponentially suppressed below a threshold field strength. Above this threshold, the energy for pair creation must come from the electric field itself which ought to eventually relax to the threshold strength. Calculating this relaxation in a self-consistent manner, however, is difficult. Chu and Vachaspati addressed this problem in the context of capacitor discharge in massless QED2 [1] by utilizing bosonization in two-dimensions. When the bare fermions are massless, the dual bosonized theory is free and capacitor discharge can be analyzed exactly [1], however, special care is required in its interpretation given that the theory exhibits confinement. In this paper we reinterpret the findings of [1], where the capacitors Schwinger-discharge via electrically neutral dipolar meson-production, and generalize this to the case where the fermions have bare masses. Crucially, we note that when the initial charge of the capacitor is large compared to the charge of the fermions, Q » e, the classical equation of motion for the bosonized model accurately characterizes the dynamics of discharge. For massless QED2, we find that the discharge is suppressed below a critical plate separation that is commensurate with the length scale associated with the meson dipole moment. For massive QED2, we find in addition, a mass threshold familiar from (3+1)-d, and show the electric field relaxes to a final steady state with a magnitude proportional to the initial charge. We discuss the wider implications of our findings and identify challenges in extending this treatment to higher dimensions.





Sign in / Sign up

Export Citation Format

Share Document