scholarly journals Bosonic crystalline symmetry protected topological phases beyond the group cohomology proposal

2020 ◽  
Vol 101 (16) ◽  
Author(s):  
Hao Song ◽  
Charles Zhaoxi Xiong ◽  
Sheng-Jie Huang
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. X. M. Riberolles ◽  
T. V. Trevisan ◽  
B. Kuthanazhi ◽  
T. W. Heitmann ◽  
F. Ye ◽  
...  

AbstractKnowledge of magnetic symmetry is vital for exploiting nontrivial surface states of magnetic topological materials. EuIn2As2 is an excellent example, as it is predicted to have collinear antiferromagnetic order where the magnetic moment direction determines either a topological-crystalline-insulator phase supporting axion electrodynamics or a higher-order-topological-insulator phase with chiral hinge states. Here, we use neutron diffraction, symmetry analysis, and density functional theory results to demonstrate that EuIn2As2 actually exhibits low-symmetry helical antiferromagnetic order which makes it a stoichiometric magnetic topological-crystalline axion insulator protected by the combination of a 180∘ rotation and time-reversal symmetries: $${C}_{2}\times {\mathcal{T}}={2}^{\prime}$$ C 2 × T = 2 ′ . Surfaces protected by $${2}^{\prime}$$ 2 ′ are expected to have an exotic gapless Dirac cone which is unpinned to specific crystal momenta. All other surfaces have gapped Dirac cones and exhibit half-integer quantum anomalous Hall conductivity. We predict that the direction of a modest applied magnetic field of μ0H ≈ 1 to 2 T can tune between gapless and gapped surface states.


2015 ◽  
Vol 92 (24) ◽  
Author(s):  
Tsuneya Yoshida ◽  
Takahiro Morimoto ◽  
Akira Furusaki

2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Shang-Qiang Ning ◽  
Chenjie Wang ◽  
Qing-Rui Wang ◽  
Zheng-Cheng Gu

2019 ◽  
Vol 99 (24) ◽  
Author(s):  
Bastian Höckendorf ◽  
Andreas Alvermann ◽  
Holger Fehske

2020 ◽  
Vol 16 (12) ◽  
pp. 1181-1183 ◽  
Author(s):  
Max McGinley ◽  
Nigel R. Cooper

Sign in / Sign up

Export Citation Format

Share Document