Direct observation of the superconducting energy gap developing in the conductivity spectra of niobium

1998 ◽  
Vol 57 (22) ◽  
pp. 14416-14421 ◽  
Author(s):  
A. V. Pronin ◽  
M. Dressel ◽  
A. Pimenov ◽  
A. Loidl ◽  
I. V. Roshchin ◽  
...  
2004 ◽  
Vol 69 (10) ◽  
Author(s):  
I. K. Yanson ◽  
S. I. Beloborod’ko ◽  
Yu. G. Naidyuk ◽  
O. V. Dolgov ◽  
A. A. Golubov

2001 ◽  
Vol 54 (4) ◽  
pp. 508-514 ◽  
Author(s):  
K Katsumata ◽  
M Hagiwara ◽  
Z Honda ◽  
J Satooka ◽  
A Aharony ◽  
...  

MRS Bulletin ◽  
1990 ◽  
Vol 15 (6) ◽  
pp. 31-33
Author(s):  
M. Brian Maple

This issue of the MRS BULLETIN is devoted to high Tc superconductivity. It is the sequel to a previous series of articles on the same subject which appeared in the MRS BULLETIN in January 1989. While the articles in the January 1989 issue emphasized the families of high Tc superconducting oxides known at that rime, as well as novel processing techniques and thin films, the papers in this issue focus on the physical properties of high Tc oxide superconductors.The quality of polycrystalline and single-crystal bulk and thin-film materials has improved to the point where researchers can now make reliable measurements of many physical properties representative of the intrinsic behavior of these materials. As a result, a broad spectrum of important issues such as the nature of the electronic structure, the type of superconducting electron pairing, the magnitude and temperature dependence of the superconducting energy gap, the behavior of fluxoids in the vortex state, etc., can be addressed meaningfully. Presently emerging is a consistent picture of the physical properties of the high Tc oxides, which will form the foundation to eventually developing an appropriate theory for the normal and superconducting states of these remarkable materials.


2020 ◽  
Vol 80 (2) ◽  
Author(s):  
Hai-Li Li ◽  
Guoyang Fu ◽  
Yan Liu ◽  
Jian-Pin Wu ◽  
Xin Zhang

Abstract In this paper, we construct a novel holographic superconductor from higher derivative (HD) gravity involving a coupling between the complex scalar field and the Weyl tensor. This HD coupling term provides a near horizon effective mass squared, which can violates IR Breitenlohner–Freedman (BF) bound by tuning the HD coupling and induces the instability of black brane such that the superconducting phase transition happens. We also study the properties of the condensation and the conductivity in the probe limit. We find that a wider extension of the superconducting energy gap ranging from 4.6 to 10.5 may provide a novel platform to model and interpret the phenomena in the real materials of high temperature superconductor.


Sign in / Sign up

Export Citation Format

Share Document