Multiple-beam x-ray diffraction near exact backscattering in silicon

2001 ◽  
Vol 63 (9) ◽  
Author(s):  
John P. Sutter ◽  
E. Ercan Alp ◽  
Michael Y. Hu ◽  
Peter L. Lee ◽  
Harald Sinn ◽  
...  
1998 ◽  
Vol 57 (14) ◽  
pp. 8218-8222 ◽  
Author(s):  
Rachel Eisenhower ◽  
Roberto Colella ◽  
Benjamin Grushko

2015 ◽  
Vol 71 (4) ◽  
pp. 460-466 ◽  
Author(s):  
Po-Yu Liao ◽  
Wen-Chung Liu ◽  
Chih-Hao Cheng ◽  
Yi-Hua Chiu ◽  
Ying-Yu Kung ◽  
...  

This paper reports temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals, involving forbidden (002) and weak (222) reflections. Phase determination based on multiple-beam diffraction is employed to estimate phase shifts from (002)-based \{(002)(375)(37\overline{3})\} four-beam cases and (222)-based \{ (222)(\overline{5}3\overline{3})\} three-beam cases in the vicinity of the GeKedge for temperatures from 20 K up to 300 K. The forbidden/weak reflections enhance the sensitivity of measuring phases at resonance. At room temperature, the resonance triplet phases reach a maximum of 8° for the four-beam cases and −19° for the three-beam cases. It is found that the peak intensities and triplet phases obtained from the (002) four-beam diffraction are related to thermal motion induced anisotropy and anomalous dispersion, while the (222) three-beam diffraction depends on the aspherical covalent electron distribution and anomalous dispersion. However, the electron–phonon interaction usually affects the forbidden reflections with increasing temperatures and seems to have less effect on the resonance triplet phase shifts measured from the (002) four-beam diffraction. The resonance triplet phase shifts of the (222) three-beam diffractionversustemperature are also small.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Sign in / Sign up

Export Citation Format

Share Document