scholarly journals Surface states and topological invariants in three-dimensional topological insulators: Application toBi1−xSbx

2008 ◽  
Vol 78 (4) ◽  
Author(s):  
Jeffrey C. Y. Teo ◽  
Liang Fu ◽  
C. L. Kane
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Hiroki Kondo ◽  
Yutaka Akagi ◽  
Hosho Katsura

Abstract Since the theoretical prediction and experimental observation of the magnon thermal Hall effect, a variety of novel phenomena that may occur in magnonic systems have been proposed. We review recent advances in the study of topological phases of magnon Bogoliubov–de Gennes (BdG) systems. After giving an overview of previous works on electronic topological insulators and the magnon thermal Hall effect, we provide the necessary background for bosonic BdG systems, with particular emphasis on their non-Hermiticity arising from the diagonalization of the BdG Hamiltonian. We then introduce definitions of $$ \mathbb{Z}_2 $$ topological invariants for bosonic systems with pseudo-time-reversal symmetry, which ensures the existence of bosonic counterparts of “Kramers pairs.” Because of the intrinsic non-Hermiticity of bosonic BdG systems, these topological invariants have to be defined in terms of the bosonic Berry connection and curvature. We then introduce theoretical models that can be thought of as magnonic analogs of two- and three-dimensional topological insulators in class AII. We demonstrate analytically and numerically that the $$ \mathbb{Z}_2 $$ topological invariants precisely characterize the presence of gapless edge/surface states. We also predict that bilayer CrI$$_3$$ with a particular stacking would be an ideal candidate for the realization of a two-dimensional magnon system characterized by a nontrivial $$ \mathbb{Z}_2 $$ topological invariant. For three-dimensional topological magnon systems, the magnon thermal Hall effect is expected to occur when a magnetic field is applied to the surface.


2020 ◽  
Vol 116 (14) ◽  
pp. 141603
Author(s):  
Jinling Yu ◽  
Wenyi Wu ◽  
Yumeng Wang ◽  
Kejing Zhu ◽  
Xiaolin Zeng ◽  
...  

2021 ◽  
Author(s):  
◽  
Robin Gühne

<p>The three-dimensional topological insulators Bi₂Se₃ and Bi₂Te₃ are model systems of a new class of materials with an insulating bulk and gapless surface states. Their small band gaps and the heavy elements are essential for the topologically non-trivial band structure, but these features are similarly responsible for other remarkable properties, such as their high thermoelectric performance.  This thesis investigates the electronic properties of the topological insulators Bi₂Se₃ and Bi₂Te₃ with a broad range of experimental methods. Ferromagnetism in Mn doped Bi₂Te₃ is shown to disappear under sample sintering. A surprisingly large magnetoresistance and a charge carrier independent change in the sign of the thermopower with increasing Mn content are discussed.¹²⁵Te nuclear magnetic resonance (NMR) of Bi₂Te₃ single crystals suggest an unusual electronic spin susceptibility and complex NMR shifts. The quadrupole interaction of ²⁰⁹Bi nuclei in Bi₂Se₃ single crystals is shown to be a signature of the band inversion in quantitative agreement with first-principle calculations. Furthermore, it is proposed that the strong spin-orbit coupling of conduction electrons causes a non-trivial orientation dependent quadrupole splitting of the ²⁰⁹Bi resonance.</p>


2015 ◽  
Vol 115 (1) ◽  
Author(s):  
Titus Neupert ◽  
Stephan Rachel ◽  
Ronny Thomale ◽  
Martin Greiter

Sign in / Sign up

Export Citation Format

Share Document