scholarly journals Thermal rectification in nonlinear quantum circuits

2009 ◽  
Vol 79 (14) ◽  
Author(s):  
Tomi Ruokola ◽  
Teemu Ojanen ◽  
Antti-Pekka Jauho
2021 ◽  
Author(s):  
Taylor Patti ◽  
Jean Kossaifi ◽  
Anima Anandkumar ◽  
Susanne Yelin

Abstract Despite extensive research efforts, few quantum algorithms for classical optimization demonstrate realizable advantage. The utility of many quantum algorithms is limited by high requisite circuit depth and nonconvex optimization landscapes. We tackle these challenges to quantum advantage with two new variational quantum algorithms, which utilize multi-basis graph encodings and nonlinear activation functions to outperform existing methods with remarkably shallow quantum circuits. Both algorithms provide a polynomial reduction in measurement complexity and either a factor of two speedup a factor of two reduction in quantum resources. Typically, the classical simulation of such algorithms with many qubits is impossible due to the exponential scaling of traditional quantum formalism and the limitations of tensor networks. Nonetheless, the shallow circuits and moderate entanglement of our algorithms, combined with efficient tensor method-based simulation, enable us to successfully optimize the MaxCut of high-connectivity global graphs with up to 512 nodes (qubits) on a single GPU.


2021 ◽  
Vol 103 (15) ◽  
Author(s):  
Bibek Bhandari ◽  
Paolo Andrea Erdman ◽  
Rosario Fazio ◽  
Elisabetta Paladino ◽  
Fabio Taddei

2014 ◽  
Vol 5 (3) ◽  
pp. 871-981 ◽  
Author(s):  
Pang Xiao Feng

We establish the nonlinear quantum mechanics due to difficulties and problems of original quantum mechanics, in which microscopic particles have only a wave feature, not corpuscle feature, which are completely not consistent with experimental results and traditional concept of particle. In this theory the microscopic particles are no longer a wave, but localized and have a wave-corpuscle duality, which are represented by the following facts, the solutions of dynamic equation describing the particles have a wave-corpuscle duality, namely it consists of a mass center with constant size and carrier wave, is localized and stable and has a determinant mass, momentum and energy, which obey also generally conservation laws of motion, their motions meet both the Hamilton equation, Euler-Lagrange equation and Newton-type equation, their collision satisfies also the classical rule of collision of macroscopic particles, the uncertainty of their position and momentum is denoted by the minimum principle of uncertainty. Meanwhile the microscopic particles in this theory can both propagate in solitary wave with certain frequency and amplitude and generate reflection and transmission at the interfaces, thus they have also a wave feature, which but are different from linear and KdV solitary wave’s. Therefore the nonlinear quantum mechanics changes thoroughly the natures of microscopic particles due to the nonlinear interactions. In this investigation we gave systematically and completely the distinctions and variations between linear and nonlinear quantum mechanics, including the significances and representations of wave function and mechanical quantities, superposition principle of wave function, property of microscopic particle, eigenvalue problem, uncertainty relation and the methods solving the dynamic equations, from which we found nonlinear quantum mechanics is fully new and different from linear quantum mechanics. Finally, we verify further the correctness of properties of microscopic particles described by nonlinear quantum mechanics using the experimental results of light soliton in fiber and water soliton, which are described by same nonlinear Schrödinger equation. Thus we affirm that nonlinear quantum mechanics is correct and useful, it can be used to study the real properties of microscopic particles in physical systems.


2019 ◽  
Vol 383 (23) ◽  
pp. 2729-2738 ◽  
Author(s):  
Bruno G. da Costa ◽  
Ernesto P. Borges

2005 ◽  
Vol 95 (14) ◽  
Author(s):  
V. T. Petrashov ◽  
K. G. Chua ◽  
K. M. Marshall ◽  
R. Sh. Shaikhaidarov ◽  
J. T. Nicholls

2014 ◽  
Vol 16 (9) ◽  
pp. 093026 ◽  
Author(s):  
Mateus Araújo ◽  
Adrien Feix ◽  
Fabio Costa ◽  
Časlav Brukner
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document