thermal rectification
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 84)

H-INDEX

41
(FIVE YEARS 5)

Author(s):  
Ming-Qian Yuan ◽  
Yong Zhang ◽  
Shui-Hua Yang ◽  
Cheng-Long Zhou ◽  
Hong-Liang Yi

Author(s):  
Wei-Jen Chen ◽  
Biao Feng ◽  
Cheng Shao ◽  
Jin Yang ◽  
Liwu Fan ◽  
...  

Author(s):  
Trevor J. Shimokusu ◽  
Qing Zhu ◽  
Natan Rivera ◽  
Geoff Wehmeyer

Author(s):  
Israel Díaz ◽  
Rafael Sanchez

Abstract We investigate the heat transport properties of a three-level system coupled to three thermal baths, assuming a model based on superconducting circuit implementations. The system-bath coupling is mediated by resonators which serve as frequency filters for the different qutrit transitions. Taking into account the finite quality factors of the resonators, we find thermal rectification and circulation effects not expected in configurations with perfectly-filtered couplings. Heat leakage in off-resonant transitions can be exploited to make the system work as an ideal diode where heat flows in the same direction between two baths irrespective of the sign of the temperature difference, as well as a perfect heat circulator whose state is phase-reversible.


Nano Futures ◽  
2021 ◽  
Author(s):  
Fayong Liu ◽  
Manoharan Muruganathan ◽  
Yu Feng ◽  
Shinichi Ogawa ◽  
Yukinori Morita ◽  
...  

Abstract The graphene-based thermal rectification is investigated by measuring the thermal transport properties on asymmetric suspended graphene nanomesh devices. Sub-10 nm periodic nanopore phononic crystal structure is successfully patterned on the half area of the suspended graphene by the helium ion beam milling technology. The “differential thermal leakage” method is developed for thermal transport measurement without being disturbed by the electron current leakage through the suspended graphene bridge. Up to 60 % thermal rectification ratio is observed in a typical device with a nanopore pitch of 20 nm. By increasing the nanopore pitch in a particular range, the thermal rectification ratio shows an increment. However, this ratio is degraded by increasing the environmental temperature. This experiment preliminary shows a promising way to develop a high-performance thermal rectifier by using a phononic crystal to introduce the asymmetry on homogenous material.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012115
Author(s):  
T Swoboda ◽  
K Klinar ◽  
A Kitanovski ◽  
M Muñoz Rojo

Abstract Thermal diodes are devices that allow heat to flow preferentially in one direction. This unique thermal management capability has attracted attention in various applications, like electronics, sensors, energy conversion or space applications, among others. Despite their interest, the development of efficient thermal diodes remains still a challenge. In this paper, we report a scalable and adjustable thermal diode based on a multilayer structure that consists of a combination of phase change and phase invariant materials. We applied a parametric sweep in order to find the optimum conditions to maximize the thermal rectification ratio. Our simulations predicted a maximum thermal rectification ratio of ~20%. To evaluate the impact of these devices in real applications, we theoretically analysed the performance of a magnetocaloric refrigerating device that integrates this thermal diode. The results showed a 0.18 K temperature span between the heat source and the heat sink at an operating frequency of 25 Hz.


Sign in / Sign up

Export Citation Format

Share Document