scholarly journals Quantum transport through single-molecule junctions with orbital degeneracies

2010 ◽  
Vol 82 (15) ◽  
Author(s):  
Maximilian G. Schultz
2017 ◽  
Vol 19 (43) ◽  
pp. 29534-29539 ◽  
Author(s):  
Jakub K. Sowa ◽  
Jan A. Mol ◽  
G. Andrew D. Briggs ◽  
Erik M. Gauger

The celebrated mechanism of environment-assisted quantum transport is translated to the realm of charge transfer in molecular systems.


Author(s):  
Timothy C. Siu ◽  
Joshua Y. Wong ◽  
Matthew O. Hight ◽  
Timothy A. Su

This article reviews the scope of inorganic cluster compounds measured in single-molecule junctions. The article explores how the structure and bonding of inorganic clusters give rise to specific quantum transport phenomena in molecular junctions.


2020 ◽  
Author(s):  
María Camarasa-Gómez ◽  
Daniel Hernangómez-Pérez ◽  
Michael S. Inkpen ◽  
Giacomo Lovat ◽  
E-Dean Fung ◽  
...  

Ferrocenes are ubiquitous organometallic building blocks that comprise a Fe atom sandwiched between two cyclopentadienyl (Cp) rings that rotate freely at room temperature. Of widespread interest in fundamental studies and real-world applications, they have also attracted<br>some interest as functional elements of molecular-scale devices. Here we investigate the impact of<br>the configurational degrees of freedom of a ferrocene derivative on its single-molecule junction<br>conductance. Measurements indicate that the conductance of the ferrocene derivative, which is<br>suppressed by two orders of magnitude as compared to a fully conjugated analog, can be modulated<br>by altering the junction configuration. Ab initio transport calculations show that the low conductance is a consequence of destructive quantum interference effects that arise from the hybridization of metal-based d-orbitals and the ligand-based π-system. By rotating the Cp rings, the hybridization, and thus the quantum interference, can be mechanically controlled, resulting in a conductance modulation that is seen experimentally.<br>


2018 ◽  
Author(s):  
Kun Wang ◽  
Andrea Vezzoli ◽  
Iain Grace ◽  
Maeve McLaughlin ◽  
Richard Nichols ◽  
...  

We have used scanning tunneling microscopy to create and study single molecule junctions with thioether-terminated oligothiophene molecules. We find that the conductance of these junctions increases upon formation of charge transfer complexes of the molecules with tetracyanoethene, and that the extent of the conductance increase is greater the longer is the oligothiophene, i.e. the lower is the conductance of the uncomplexed molecule in the junction. We use non-equilibrium Green's function transport calculations to explore the reasons for this theoretically, and find that new resonances appear in the transmission function, pinned close to the Fermi energy of the contacts, as a consequence of the charge transfer interaction. This is an example of a room temperature quantum interference effect, which in this case boosts junction conductance in contrast to earlier observations of QI that result in diminished conductance.<br>


Nano Letters ◽  
2012 ◽  
Vol 12 (3) ◽  
pp. 1643-1647 ◽  
Author(s):  
Sriharsha V. Aradhya ◽  
Jeffrey S. Meisner ◽  
Markrete Krikorian ◽  
Seokhoon Ahn ◽  
Radha Parameswaran ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4685-4686
Author(s):  
Hervé Dekkiche ◽  
Andrea Gemma ◽  
Fatemeh Tabatabaei ◽  
Andrei S. Batsanov ◽  
Thomas Niehaus ◽  
...  

Correction for ‘Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives’ by Hervé Dekkiche et al., Nanoscale, 2020, 12, 18908–18917, DOI: 10.1039/D0NR04413J.


Sign in / Sign up

Export Citation Format

Share Document