d orbitals
Recently Published Documents


TOTAL DOCUMENTS

279
(FIVE YEARS 40)

H-INDEX

33
(FIVE YEARS 5)

Author(s):  
Pezhman Mirmarghabi ◽  
Homayoon Bahrami

The Mn(III)-oxophlorin complexes with imidazole, pyridine and t-butylcyanide as axial ligands have been studied using B3LYP, Bv86p, and M06-2X methods. All of the possible optimized geometries are specified, while the M06-2X is employed. Results obtained show that the isomers of Mn(III)-oxophlorin with imidazole or pyridine are the most stable at quintet state, compared to singlet and triplet spin states. Besides, there are two and four [Formula: see text]-electrons on manganese in each of these complexes at triplet and quintet states, respectively. Also, Mn(III)-oxophlorin with t-butylcyanide as axial ligand is only stable at singlet state. Non-specific solvent effects show that dispersion and London forces have the basic role in stability of complexes in a solvent. Note that latter interactions can occur in medium with dielectric constant ([Formula: see text]) of [Formula: see text]8, such as [Formula: see text] for position of oxophlorin in heme oxygenase enzyme. NBO analysis show that there is no degeneracy between d orbitals of Mn in the five-coordinated Mn(III)-oxophlorin at singlet and triplet spin states, but two d orbitals of manganese are degenerated in latter complexes at quintet state. Such degeneracy of d orbitals is observed in a complex with square pyramid structure. Then five-coordinated Mn(III)-oxophlorin with imidazole or pyridine is the most stable at quintet spin state, because of its geometry corresponding to square pyramid configuration of atoms. Also, nonbounding interaction between Mn and the ring of oxophlorin or Mn and ligand are more effective in Mn(III)-oxophlorin with imidazole as axial ligand, compared to pyridine and t-butylcyanide.


2022 ◽  
Vol 64 (3) ◽  
pp. 303
Author(s):  
В.Л. Карбовский ◽  
А.А. Романский ◽  
Л.И. Карбовская ◽  
В.В. Стонис

The total and partial densities of electronic states of gold monolayer structures of different symmetry are calculated by the quantum mechanical calculations methods in the DFT approximation. It is shown that the first coordination sphere is determinant in the formation of the fine structure and the extent of the valence bands of the monolayer gold structures under study. The peaks splitting of the TDOS curve, which leads to its finer structure, is influenced not only by the lengths of interatomic bonds but also by the mutual arrangement of atoms. The influence of long-range interactions on the electronic structure of gold monolayers has been established. For example, for the (110) plane, a change in the atomic ordering in the third coordination sphere as a result of the introduction of a vacancy leads to noticeable changes in the TDOS curve, which indicates either a significant role of the atoms of the third coordination sphere or a significant redistribution of the interaction of d-orbitals of different symmetries of close neighbours. A correlation between the packing density, as well as the number of neighbours in the first coordination sphere, and the width of the energy band of gold monolayers has been established.


Author(s):  
Yuan Tian ◽  
Bin Chang ◽  
Guihua Wang ◽  
Lili Li ◽  
Lianguo Gong ◽  
...  

As an environmentally-benign and sustainable option for NH3 synthesis, electrochemical nitrogen reduction reaction (NRR) has been expected to replace the traditional Haber-Bosch process. Transition metals with empty d-orbitals achieve NRR...


2021 ◽  
Vol 104 (22) ◽  
Author(s):  
Chenhai Shen ◽  
Guangtao Wang ◽  
Tianxing Wang ◽  
Xu Zhao ◽  
Yong Yan ◽  
...  

2021 ◽  
Vol 2145 (1) ◽  
pp. 012035
Author(s):  
Nontawat Chaiyaocha ◽  
Worasak Sukkabot

Abstract A spin density functional calculations of structural and electronic properties of LiMnO2 doped with several transition metals (Sc, V and Tc) are reported. The physical properties of LiMnO2 material are sensitive with the transition-metal dopants. Transition metal dopants enhance the lattice parameters and volumes, thus increasing the Li diffusion channel. The computations underscore that d orbitals of transition metals are located around the Fermi level. V doping in LiMnO2 demonstrates the enhancement in the electronic conductivity due to the volumetric expansion. Finally, these results deliver a valuable information for the transition-metal doped LiMnO2 cathode materials to improve the performance of lithium batteries.


Author(s):  
Yevgeniy Anatolevich Ovchenkov ◽  
Dmitry Chareev ◽  
Ekaterina S. Kozlyakova ◽  
Eduard Levin ◽  
Mihail G. Miheev ◽  
...  

Abstract Our study of FeSe$ _ {1-x}$Te$ _ {x}$ crystals with x $<$ 0.15 shows that the phase separation in these compositions occurs into phases with a different stoichiometry of iron. This phase separation may indicate structural instability of the iron plane in the studied range of compositions. We tentatively propose an explanation of the structural instability of the iron plane in the studied layered compounds in terms of the possible change in the bond polarity and the peculiarity of the direct $d-d$ exchange in the iron plane in the framework of the basic phenomenological description such as the Bethe-Slater curve. With this approach, when the distance between iron atoms is close to the value at which the sign of the magnetic exchange for some $d$ orbitals changes, structural and electronic instability can occur. Anomalies in the crystal field near the point of charge neutrality can also be a significant component of this instability.


2021 ◽  
Vol 2122 (1) ◽  
pp. 012002
Author(s):  
Niraj Aryal ◽  
Efstratios Manousakis

Abstract We are discussing a model to understand previously obtained results on Weyl semimetals as realized in MoTe2 using DFT and DFT+U calculations. The model is motivated from general principles and we use it to investigate the effects of Coulomb correlations originating from the localized nature of the Mo-d orbitals. We find that such correlations can eliminate or create pairs of Weyl points as the strength of the Coulomb interaction is varied. The effect of the spin-orbit coupling (SOC) is to split each Weyl point, which is assumed present in the absence of SOC, into pairs of spin-chiral partners.


2021 ◽  
Author(s):  
Hiago Maurilio Lopes Carvalho ◽  
Mariama Rebello Sousa Dias ◽  
Anibal Thiago Bezerra

Abstract Gold and silver alloys enable novel opportunities for engineering materials with distinct optical responses. Here we investigate the optical properties of gold and silver (Ag x Au 1−x) structures using First-Principle Density Functional Theory (DFT) for gold concentrations varying from 0% up to 100% with steps of 25%. Results of the optical permittivity are analyzed with the independent particle approximation and compared with previously reported theoretical and experimental works. The pure systems and the ones with unbalanced concentrations exhibit isotropic optical responses. The Ag 0.50 Au 0.50 shows an anisotropic response among the y-direction and the xz-direction, mainly in the intraband transition energy range. The anisotropy is elucidated in terms of the d-orbitals density of states and the charge distribution with the structure. The anisotropic optical response can be the origin of the discrepancies among reported experimental results for structures with the same stoichiometry.


Author(s):  
Mridu Sharma ◽  
Ranber Singh

We investigated the electronic structure modifications in two-dimensional (2D) pentagonal PdS<sub>2</sub> materials by external strains. In the absence of external strain the 2D pentagonal PdS<sub>2</sub> materials are indirect band gap semiconductors. The band gap decreases with an increase in the number of stacking PdS<sub>2</sub> monolayers. The external uniaxial and biaxial strains significantly modify the contributions of p-orbitals of S atoms and d-orbitals of Pd atoms to the conduction and valence band edges. It consequently modify the electronic structures of 2D pentagonal PdS<sub>2</sub> materials. This strain tunability of electronic structures of 2D pentagonal PdS<sub>2</sub> materials may be useful for their electro-mechanical applications.


Science ◽  
2021 ◽  
Vol 371 (6534) ◽  
pp. 1125-1128
Author(s):  
B. Rösch ◽  
T. X. Gentner ◽  
J. Langer ◽  
C. Färber ◽  
J. Eyselein ◽  
...  
Keyword(s):  

Here we report that attempted preparation of low-valent CaI complexes in the form of LCa-CaL (where L is a bulky β-diketiminate ligand) under dinitrogen (N2) atmosphere led to isolation of LCa(N2)CaL, which was characterized crystallographically. The N22ˉ anion in this complex reacted in most cases as a very potent two-electron donor. Therefore, LCa(N2)CaL acts as a synthon for the low-valent CaI complex LCa-CaL, which was the target of our studies. The N22ˉ anion could also be protonated to diazene (N2H2) that disproportionated to hydrazine and N2. The role of Ca d orbitals for N2 activation is discussed.


Sign in / Sign up

Export Citation Format

Share Document