scholarly journals Possible observation of parametrically amplified coherent phasons in K0.3MoO3using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
H. Y. Liu ◽  
I. Gierz ◽  
J. C. Petersen ◽  
S. Kaiser ◽  
A. Simoncig ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamoon Hedayat ◽  
Davide Bugini ◽  
Hemian Yi ◽  
Chaoyu Chen ◽  
Xingjiang Zhou ◽  
...  

AbstractWe use circular dichroism (CD) in time- and angle-resolved photoemission spectroscopy (trARPES) to measure the femtosecond charge dynamics in the topological insulator (TI) $$\hbox {Bi}_{2}\hbox {Te}_{3}$$ Bi 2 Te 3 . We detect clear CD signatures from topological surface states (TSS) and surface resonance (SR) states. In time-resolved measurements, independently from the pump polarization or intensity, the CD shows a dynamics which provides access to the unexplored electronic evolution in unoccupied states of $$\hbox {Bi}_{2}\hbox {Te}_{3}$$ Bi 2 Te 3 . In particular, we are able to disentangle the unpolarized electron dynamics in the bulk states from the spin-textured TSS and SR states on the femtosecond timescale. Our study demonstrates that photoexcitation mainly involves the bulk states and is followed by sub-picosecond transport to the surface. This provides essential details on intra- and interband scattering in the relaxation process of TSS and SR states. Our results reveal the significant role of SRs in the subtle ultrafast interaction between bulk and surface states of TIs.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Takeshi Suzuki ◽  
Takashi Someya ◽  
Takahiro Hashimoto ◽  
Shoya Michimae ◽  
Mari Watanabe ◽  
...  

Abstract Photoexcitation is a very powerful way to instantaneously drive a material into a novel quantum state without any fabrication, and variable ultrafast techniques have been developed to observe how electron, lattice, and spin degrees of freedom change. One of the most spectacular phenomena is photoinduced superconductivity, and it has been suggested in cuprates that the transition temperature Tc can be enhanced from the original Tc with significant lattice modulations. Here, we show a possibility for another photoinduced high-Tc superconducting state in the iron-based superconductor FeSe. The transient electronic state over the entire Brillouin zone is directly observed by time- and angle-resolved photoemission spectroscopy using extreme ultraviolet pulses obtained from high harmonic generation. Our results of dynamical behaviors from 50 fs to 800 ps consistently support the favourable superconducting state after photoexcitation well above Tc. This finding demonstrates that multiband iron-based superconductors emerge as an alternative candidate for photoinduced superconductors.


2019 ◽  
Vol 90 (2) ◽  
pp. 023104 ◽  
Author(s):  
M. Puppin ◽  
Y. Deng ◽  
C. W. Nicholson ◽  
J. Feldl ◽  
N. B. M. Schröter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document