scholarly journals Marginal Fermi liquid versus excitonic instability in three-dimensional Dirac semimetals

2014 ◽  
Vol 90 (12) ◽  
Author(s):  
J. González
1994 ◽  
Vol 08 (22) ◽  
pp. 3083-3094 ◽  
Author(s):  
V. DALLACASA

We have investigated the occurrence of superconductivity in a Fermi liquid of finite volume, under the assumption of a sharp surface, by solving numerically (at arbitrary length) and analytically (at the smallest lengths) the Cooper–BCS model. We find that this model can predict enhanced superconductivity with respect to the bulk BCS model when the system length L ≪ L0, in which L0 is a characteristic length. Under the same conditions the normal state is found to behave anomalously with respect to the conventional Fermi liquid, with a linear temperature dependence of the resistivity and marginal Fermi liquid properties. The results are used to implement a domain model of high T c superconductors.


2000 ◽  
Vol 85 (21) ◽  
pp. 4602-4605 ◽  
Author(s):  
D. Belitz ◽  
T. R. Kirkpatrick ◽  
R. Narayanan ◽  
Thomas Vojta

1999 ◽  
Vol 13 (29n31) ◽  
pp. 3467-3471
Author(s):  
LIYUAN ZHANG ◽  
QIANG HAN

Reviewing the situation of the experimental studies of the normal state in high-Tc super-conductors (HTS), we have put forward nine points to be necessarily considered in any theory of the normal state in HTS. It is argued that the two-dimension two-subsystem model is at least qualitatively consistent with all these nine points. On the basis of these arguments, the problem of the electronic pairing and variation in the normal state of metal has been discussed. We have put forward three variation of metals, i.e. the conventional metal (Fermi liquid), near conventional metal and the metal with the markedly pseudogapped metallic behaviour which may be a marginal Fermi liquid.


JETP Letters ◽  
2019 ◽  
Vol 109 (11) ◽  
pp. 715-721 ◽  
Author(s):  
O. O. Shvetsov ◽  
V. D. Esin ◽  
A. V. Timonina ◽  
N. N. Kolesnikov ◽  
E. V. Deviatov

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Junseong Song ◽  
Byung Cheol Park ◽  
Kyung Ik Sim ◽  
Joonho Bang ◽  
Sunghun Kim ◽  
...  

AbstractTopological Dirac semimetals have emerged as a platform to engineer Berry curvature with time-reversal symmetry breaking, which allows to access diverse quantum states in a single material system. It is of interest to realize such diversity in Dirac semimetals that provides insight on correlation between Berry curvature and quantum transport phenomena. Here, we report the transition between anomalous Hall and chiral fermion states in three-dimensional topological Dirac semimetal KZnBi, which is demonstrated by tuning the direction and flux of Berry curvature. Angle-dependent magneto-transport measurements show that both anomalous Hall resistance and positive magnetoresistance are maximized at 0° between net Berry curvature and rotational axis. We find that the unexpected crossover of anomalous Hall resistance and negative magnetoresistance suddenly occurs when the angle reaches to ~70°, indicating that Berry curvature strongly correlates with quantum transports of Dirac and chiral fermions. It would be interesting to tune Berry curvature within other quantum phases such as topological superconductivity.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3023-3026
Author(s):  
De-Hua Lin ◽  
Xingang Wu

Studying the change of the cuprate's crystal structure based on doping and then the effect on its high-T c superconductivity, is an effective way to seek the mechanism of superconductivity. We explore the doping effect in the cuprate's crystal structure, such as the property of Cu-O layers, the interlayer spacing, the density of carriers and so on. Then, by considering the effect of the nuclear spin, we construct a three-dimensional superconductivity model, which is a correction of the nonphonon mechanism in a layered Fermi-Liquid.


1995 ◽  
Vol 73 (7-8) ◽  
pp. 497-504 ◽  
Author(s):  
Ranjan Chaudhury

Several schemes based on the fermionic many-body approach and the boson-exchange approach are developed to calculate the free energy and specific heat for a marginal Fermi liquid in the normal and superconducting phase. The merits and demerits of these schemes are analyzed and compared. The origin of the failure of the simple Bardeen–Stephen formula is also highlighted. The analysis is carried out in light of some experiments.


Sign in / Sign up

Export Citation Format

Share Document