single material
Recently Published Documents


TOTAL DOCUMENTS

350
(FIVE YEARS 129)

H-INDEX

31
(FIVE YEARS 7)

2022 ◽  
Vol 7 ◽  
Author(s):  
Müge Tetik ◽  
Antti Peltokorpi ◽  
Olli Seppänen ◽  
Jan Holmström

Logistics practices are processes that require alignment and coordination among project actors to support successful construction operations. While recent research has underlined the effects of single material logistics practices on project performance, practitioners need more knowledge on development paths toward successful overall logistics solutions. Based on a review of current practices obtained from the literature, this research proposes the maturity levels of planning, organizing, operating, use of technology, and information flow regarding the logistics practices in construction. Moreover, the study devises a recommended order for implementing logistics practices and investigates how companies can advance their logistics maturity from one level to the next. The proposed model has been validated via case examples from the industry. The paper contributes to construction logistics research by describing how companies can navigate development efforts to gradually improve their logistics practices. Future research could conduct more case studies within different project contexts.


2022 ◽  
pp. 2102388
Author(s):  
So Hee Kim ◽  
Joo Hwan Ko ◽  
Young Jin Yoo ◽  
Min Seok Kim ◽  
Gil Ju Lee ◽  
...  

Author(s):  
Feifei Chen ◽  
Yunpeng Miao ◽  
Lei Zhang ◽  
Shitong Chen ◽  
Xiangyang Zhu

Nano Energy ◽  
2022 ◽  
pp. 106959
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Jonas Örtegren ◽  
Min Song ◽  
Martin Olsen ◽  
...  

2021 ◽  
Author(s):  
D. R. Lavanya ◽  
G. P. Darshan ◽  
J. Malleshappa ◽  
H. B. Premkumar ◽  
S. C. Sharma ◽  
...  

Abstract Engineering of single material with multidirectional applications is of crucial for improving the productivity, low cost, flexibility and least power consumption, etc. To achieve these requirements, novel design structures and high performance materials are in urgent need. Lanthanide-doped nanophosphors have greatest strengths and ability in order to tuning its applications in various dimensions. However, nanophosphor applications in latent fingerprints visualization, anti-counterfeiting and luminescent gels/films are still in its infancy. This study demonstrated a simple strategy to enhance the luminescence of Tb3+ doped (1-11 mol %) La2Zr2O7 nanophosphors by conjugating the fluxes via simple solution combustion route. The photoluminescence spectra reveal intense peaks at ~ 491, 546, 587 and 622 nm arises from 5D4◊7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions, respectively. The highest emission intensity was achieved in the NH4Cl flux assisted nanophosphor as compared to NaBr and NH4F. The colorimetric images of fingerprints visualized using optimized nanophosphor on forensic related surfaces exhibit level –III ridge details, including sweat pores, width of the ridges, bifurcation angle, successive distance between sweat pores, etc. These results are decisive parameters which clearly supports the statement “no two persons have ever been found to have the same fingerprints”. The anti-counterfeiting security ink was formulated using nanophosphor and designed various patterns by simple screen printing and dip pen technology. The encoded information was decrypted only under ultraviolet 254 nm light. All the designed patterns are not just what it looks/feels like and how it works. As a synergetic contribution of enhanced luminescence of the prepared nanophosphor, the fabricated green-emissive films display excellent flexibility, uniformity and transparency in the normal and ultraviolet 254 nm light illumination. Aforementioned results revealed that prepared NH4Cl flux assisted La2Zr2O7: Tb3+(7 mol %) NPs are considered to be best candidate for multi-dimensional applications.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1517
Author(s):  
Huanbao Liu ◽  
Xianhai Yang ◽  
Xiang Cheng ◽  
Guangxi Zhao ◽  
Guangming Zheng ◽  
...  

Cardiovascular disease is the leading cause of death worldwide. Traditional autologous transplantation has become a severe issue due to insufficient donors. Artificial blood vessel is an effective method for the treatment of major vascular diseases, such as heart and peripheral blood vessel diseases. However, the traditional single-material printing technology has been unable to meet the users’ demand for product functional complexity, which is not only reflected in the field of industrial manufacturing, but also in the field of functional vessel-like structure regeneration. In order to achieve the printing and forming of multi-layer vessel-like structures, this paper carries out theoretical and experimental research on the printing and forming of a multi-layer vessel-like structure based on multi-material 3D bioprinting technology. Firstly, theoretical analysis has been explored to research the relationship among the different parameters in the process of vessel forming, and further confirm the synchronous relationship among the extrusion rate of material, the tangential speed of the rotating rod, and the movement speed of the platform. Secondly, sodium alginate and gelatin have been used as the experimental materials to manufacture the vessel-like structure, and the corrected parameter of the theoretical analysis is further verified. Finally, the cell-loaded materials have been printed and analyzed, and cell viability is more than 90%, which provides support for the research of multi-layer vessel-like structure printing.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kenjiro Okawa ◽  
Yasutaka Amagai ◽  
Hiroyuki Fujiki ◽  
Nobu-Hisa Kaneko

AbstractThe concept of “thermal inductance” expands the options of thermal circuits design. However, the inductive component is the only missing components in thermal circuits unlike their electromagnetic counterparts. Herein, we report an electrically controllable reverse heat flow, in which heat flows from a low-temperature side to a high-temperature side locally and temporarily in a single material by imposing thermal inertia and ac current. This effect can be regarded as an equivalent of the “thermoinductive” effect induced by the Peltier effect. We derive the exact solution indicating that this reverse heat flow occurs universally in solid-state systems, and that it is considerably enhanced by thermoelectric properties. A local cooling of 25 mK is demonstrated in (Bi,Sb)2Te3, which is explained by our exact solution. This effect can be directly applicable to the potential fabrication of “thermoinductor” in thermal circuits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kurea Nakagawa ◽  
Tomoyuki Yokouchi ◽  
Yuki Shiomi

AbstractPeltier effects, which produce a heat flux at the junction of two different materials, have been an important technology for heating and cooling by electrical means. Whereas Peltier devices have advantages such as cleanliness, silence, compactness, flexibility, reliability, and efficiency, relatively complicated modular structures are unavoidable, leading to a higher cost than that of commonly used refrigeration technology. Here, we provide a concept of a Peltier device composed of a single magnetic material exhibiting a first-order magnetic transition. Our concept is based on a controllable junction structure consisting of two magnetic phases with opposite Peltier coefficients instead of a semiconductor junction. Using $${\mathrm{Mn}}_{1.96}{\mathrm{Cr}}_{0.04}\mathrm{Sb}$$ Mn 1.96 Cr 0.04 Sb samples with the first-order magnetic transition between ferrimagnetic (FI) and antiferromagnetic (AF) states, we successfully made a stable junction structure of AF/FI/AF by a pulse heating method and achieved a maximum Peltier coefficient of 0.58 mV. Our device concept was further verified by a numerical simulation based on a finite element method. The single-material Peltier effect reported here avoids a complex device design involving material junctions and is importantly reconfigurable.


2021 ◽  
Vol 38 (10) ◽  
pp. 107403
Author(s):  
Zhe Huang ◽  
Xianbiao Shi ◽  
Gaoning Zhang ◽  
Zhengtai Liu ◽  
Soohyun Cho ◽  
...  

Signatures of topological superconductivity (TSC) in superconducting materials with topological nontrivial states prompt intensive researches recently. Utilizing high-resolution angle-resolved photoemission spectroscopy and first-principles calculations, we demonstrate multiple Dirac fermions and surface states in superconductor BaSn3 with a critical transition temperature of about 4.4 K. We predict and then unveil the existence of two pairs of type-I topological Dirac fermions residing on the rotational axis. Type-II Dirac fermions protected by screw axis are confirmed in the same compound. Further calculation for the spin helical texture of the observed surface states originating from the Dirac fermions gives an opportunity for realization of TSC in one single material. Hosting multiple Dirac fermions and topological surface states, the intrinsic superconductor BaSn3 is expected to be a new platform for further investigation of topological quantum materials as well as TSC.


Sign in / Sign up

Export Citation Format

Share Document