scholarly journals Publisher's Note: Stochastic feedback control of quantum transport to realize a dynamical ensemble of two nonorthogonal pure states [Phys. Rev. B93, 085127 (2016)]

2016 ◽  
Vol 93 (11) ◽  
Author(s):  
Shakib Daryanoosh ◽  
Howard M. Wiseman ◽  
Tobias Brandes
Author(s):  
Clive Emary

Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.


2011 ◽  
Vol 84 (8) ◽  
Author(s):  
Christina Pöltl ◽  
Clive Emary ◽  
Tobias Brandes

2014 ◽  
Vol 90 (20) ◽  
Author(s):  
Clive Emary ◽  
John Gough

TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 261-269
Author(s):  
Wei Ren ◽  
Brennan Dubord ◽  
Jason Johnson ◽  
Bruce Allison

Tight control of raw green liquor total titratable alkali (TTA) may be considered an important first step towards improving the overall economic performance of the causticizing process. Dissolving tank control is made difficult by the fact that the unknown smelt flow is highly variable and subject to runoff. High TTA variability negatively impacts operational costs through increased scaling in the dissolver and transfer lines, increased deadload in the liquor cycle, under- and over-liming, increased energy consumption, and increased maintenance. Current practice is to use feedback control to regulate the TTA to a target value through manipulation of weak wash flow while simultaneously keeping dissolver density within acceptable limits. Unfortunately, the amount of variability reduction that can be achieved by feedback control alone is fundamentally limited by the process dynamics. One way to improve upon the situation would be to measure the smelt flow and use it as a feedforward control variable. Direct measurement of smelt flow is not yet possible. The use of an indirect measurement, the dissolver vent stack temperature, is investigated in this paper as a surrogate feedforward variable for dissolving tank TTA control. Mill trials indicate that significant variability reduction in the raw green liquor TTA is possible and that the control improvements carry through to the downstream processes.


Sign in / Sign up

Export Citation Format

Share Document