scholarly journals Thermal Uhlmann-Chern number from the Uhlmann connection for extracting topological properties of mixed states

2018 ◽  
Vol 97 (23) ◽  
Author(s):  
Yan He ◽  
Hao Guo ◽  
Chih-Chun Chien
2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Lukas Wawer ◽  
Michael Fleischhauer

Author(s):  
Norman Davidson

The basic protein film technique for mounting nucleic acids for electron microscopy has proven to be a general and powerful tool for the working molecular biologist in characterizing different nucleic acids. It i s possible to measure molecular lengths of duplex and single-stranded DNAs and RNAs. In particular, it is thus possible to as certain whether or not the nucleic acids extracted from a particular source are or are not homogeneous in length. The topological properties of the polynucleotide chain (linear or circular, relaxed or supercoiled circles, interlocked circles, etc. ) can also be as certained.


2013 ◽  
Vol 45 (12) ◽  
pp. 1324-1333
Author(s):  
Baolin LI ◽  
Youguo CHEN ◽  
Xiangyong YUAN ◽  
Jackson Todd ◽  
Xiting HUANG

2020 ◽  
Vol 16 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Süleyman Ediz ◽  
Murat Cancan

Background: Reckoning molecular topological indices of drug structures gives the data about the underlying topology of these drug structures. Novel anticancer drugs have been leading by researchers to produce ideal drugs. Materials and Methods: Pharmacological properties of these new drug agents explored by utilizing simulation strategies. Topological indices additionally have been utilized to research pharmacological properties of some drug structures. Novel alkylating agents based anticancer drug candidates and ve-degree molecular topological indices have been introduced recently. Results and Conclusion: In this study we calculate ve-degree atom-bond connectivity, harmonic, geometric-arithmetic and sum-connectivity molecular topological indices for the newly defined alkylating agents based dual-target anticancer drug candidates.


1994 ◽  
Vol 20 (2) ◽  
pp. 819
Author(s):  
Muthuvel

2013 ◽  
Vol 41 (2) ◽  
pp. 548-553 ◽  
Author(s):  
Andrew A. Travers ◽  
Georgi Muskhelishvili

How much information is encoded in the DNA sequence of an organism? We argue that the informational, mechanical and topological properties of DNA are interdependent and act together to specify the primary characteristics of genetic organization and chromatin structures. Superhelicity generated in vivo, in part by the action of DNA translocases, can be transmitted to topologically sensitive regions encoded by less stable DNA sequences.


Sign in / Sign up

Export Citation Format

Share Document