scholarly journals Realistic microscopic level densities for spherical nuclei

1994 ◽  
Vol 50 (2) ◽  
pp. 836-844 ◽  
Author(s):  
Nicolas Cerf
2021 ◽  
Vol 256 ◽  
pp. 00013
Author(s):  
Jørgen Randrup ◽  
Martin Albertsson ◽  
Gillis Carlsson ◽  
Thomas Døssing ◽  
Peter Möller ◽  
...  

The transformation of a moderately excited heavy nucleus into two excited fission fragments is modeled as a strongly damped evolution of the nuclear shape. The resulting Brownian motion in the multi-dimensional deformation space is guided by the shape-dependent level density which has been calculated microscopically for each of nearly ten million shapes (given in the three-quadratic-surfaces parametrization) by using a previously developed combinatorial method that employs the same single-particle levels as those used for the calculation of the pairing and shell contributions to the five-dimensional macroscopic-microscopic potential-energy surface. The stochastic shape evolution is followed until a small critical neck radius is reached, at which point the mass, charge, and shape of the two proto-fragments are extracted. The available excitation energy is divided statistically on the basis of the microscopic level densities associated with the two distorted fragments. Specific fragment structure features may cause the distribution of the energy disvision to deviate significantly from expectations based on a Fermi-gas level density. After their formation at scission, the initially distorted fragments are being accelerated by their mutual Coulomb repulsion as their shapes relax to their equilibrium forms. The associated distortion energy is converted to additional excitation energy in the fully accelerated fragments. These subsequently undergo sequential neutron evaporation which is calculated using again the appropriate microscopic level densities. The resulting dependence of the mean neutron multiplicity on the fragment mass, as well as the dependence of on the initial excitation energy of the fissioning compound nucleus, exhibit features that are similar to the experimentally observed behavior, suggesting that the microscopic energy sharing mechanism plays an important role in low-energy fission.


2017 ◽  
Vol 10 (1) ◽  
pp. 201
Author(s):  
D. Ward ◽  
B.G. Carlsson ◽  
Th. Døssing ◽  
P. Möller ◽  
J. Randrup ◽  
...  

2017 ◽  
Vol 95 (2) ◽  
Author(s):  
D. E. Ward ◽  
B. G. Carlsson ◽  
T. Døssing ◽  
P. Möller ◽  
J. Randrup ◽  
...  

Author(s):  
D. Ward ◽  
B.G. Carlsson ◽  
Th. Døssing ◽  
P. Möller ◽  
J. Randrup ◽  
...  

1987 ◽  
Vol 36 (4) ◽  
pp. 1546-1564 ◽  
Author(s):  
M. Herman ◽  
G. Reffo

Author(s):  
K. Yoshida ◽  
F. Murata ◽  
S. Ohno ◽  
T. Nagata

IntroductionSeveral methods of mounting emulsion for radioautography at the electron microscopic level have been reported. From the viewpoint of quantitative radioautography, however, there are many critical problems in the procedure to produce radioautographs. For example, it is necessary to apply and develop emulsions in several experimental groups under an identical condition. Moreover, it is necessary to treat a lot of grids at the same time in the dark room for statistical analysis. Since the complicated process and technical difficulties in these procedures are inadequate to conduct a quantitative analysis of many radioautographs at once, many factors may bring about unexpected results. In order to improve these complicated procedures, a simplified dropping method for mass production of radioautographs under an identical condition was previously reported. However, this procedure was not completely satisfactory from the viewpoint of emulsion homogeneity. This paper reports another improved procedure employing wire loops.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Investigation of the spontaneous pituitary adenomas in rat have been limited mainly to light microscopic study. Furth et al. (1973) described them as chromophobic, secreting prolactin. Kovacs et al. (1977) in an ul trastructural investigation of adenomas of old female Long-Evans rats, found that they were composed of prolactin cells. Berkvens et al. (1980) using immunocytochemistry at the light microscopic level, demonstrated that some spontaneous tumors of old Wistar rats could contain GH, TSH or ACTH as well as PRL.


Author(s):  
Vivian V. Yang ◽  
S. Phyllis Stearner

The heart is generally considered a radioresistant organ, and has received relatively little study after total-body irradiation with doses below the acutely lethal range. Some late damage in the irradiated heart has been described at the light microscopic level. However, since the dimensions of many important structures of the blood vessel wall are submicroscopic, investigators have turned to the electron microscope for adequate visualization of histopathological changes. Our studies are designed to evaluate ultrastructural changes in the mouse heart, particularly in the capillaries and muscle fibers, for 18 months after total-body exposure, and to compare the effects of 240 rad fission neutrons and 788 rad 60Co γ-rays.Three animals from each irradiated group and three control mice were sacrificed by ether inhalation at 4 days, and at 1, 3, 6, 12, and 18 months after irradiation. The thorax was opened and the heart was fixed briefly in situwith Karnofsky's fixative.


Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


Author(s):  
Rick L. Vaughn ◽  
Shailendra K. Saxena ◽  
John G. Sharp

We have developed an intestinal wound model that includes surgical construction of an ileo-cecal patch to study the complex process of intestinal wound healing. This allows approximation of ileal mucosa to the cecal serosa and facilitates regeneration of ileal mucosa onto the serosal surface of the cecum. The regeneration of ileal mucosa can then be evaluated at different times. The wound model also allows us to determine the rate of intestinal regeneration for a known size of intestinal wound and can be compared in different situations (e.g. with and without EGF and Peyer’s patches).At the light microscopic level it appeared that epithelial cells involved in regeneration of ileal mucosa originated from the enlarged crypts adjacent to the intestinal wound and migrated in an orderly fashion onto the serosal surface of the cecum. The migrating epithelial cells later formed crypts and villi by the process of invagination and evagination respectively. There were also signs of proliferation of smooth muscles underneath the migratory epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document