scholarly journals Generic constraints on the relativistic mean-field and Skyrme-Hartree-Fock models from the pure neutron matter equation of state

2012 ◽  
Vol 86 (2) ◽  
Author(s):  
F. J. Fattoyev ◽  
W. G. Newton ◽  
Jun Xu ◽  
Bao-An Li
2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


1994 ◽  
Vol 337 (1-2) ◽  
pp. 19-24 ◽  
Author(s):  
Tomoyuki Maruyama ◽  
Hirotsugu Fujii ◽  
Takumi Muto ◽  
Toshitaka Tatsumi

1997 ◽  
Vol 06 (01) ◽  
pp. 151-159 ◽  
Author(s):  
M. Rashdan

The relativistic mean field theory (linear and nonlinear) models are extended to the case of two colliding nuclear matters, relevant to heavy ion scattering and reactions. The effect of vacuum corrections is taken into account through the relativistic Hartree approximation. The Fermi sea is assumed to consist of two colliding Lorentz elongated spheres. A relativistic covariant Pauli correction is considered for the overlap case. This relativistic Pauli correction is found to be very important due to its dependence on the effective nucleon mass which strongly depends on the model equation of state. It is found that by increasing the velocity the energy per baryon increases and saturates at higher densities. The increase in the energy per baryon at low density (the region of no overlap) is much larger than that at high density (the region of large overlap), due to Pauli correction effects. The saturation density of the nonlinear model is shifted to larger values than that of the linear model. Vacuum corrections effects are found to reduce largely te overlap region.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850059
Author(s):  
M. Ouhachi ◽  
M. R. Oudih ◽  
M. Fellah ◽  
N. H. Allal

Using the Hartree–Fock–Bogoliubov mean-field theory, the ground-state structural and decay properties of Nd isotopes are investigated from the proton-rich side up to the neutron drip-line. Quantities such as binding energies per nucleon, one and two-neutron separation energies, rms charge radii, and quadrupole deformation parameters have been calculated. Compared with the relativistic mean-field results, the present calculations are in better agreement with the available experimental data. The results show clearly the signature of a shape transition at [Formula: see text] and an abrupt increase in the deformation near the neutron drip-line. Further, the possible decay modes like alpha, cluster and [Formula: see text]-decay are analyzed in a unified fission model and phenomenological formulas. Overall, a good agreement is achieved between the calculated and experimental [Formula: see text]-values and half-lives wherever available. The most likely decay modes are thus identified throughout the isotopic chain.


2005 ◽  
Vol 14 (03) ◽  
pp. 493-498 ◽  
Author(s):  
NOËL DUBRAY ◽  
JERZY DUDEK ◽  
NICOLAS SCHUNCK

Most of the microscopic self-consistent approaches such as Hartree-Fock and/or Relativistic Mean Field theories use ensembles of a few adjustable parameters that are independent of the proton and neutron numbers and fixed once for all. This feature is referred to as the universality of the parametrization. It is further developed for the case of the phenomenological description of the nuclear deformed mean-field e.g. in the Woods-Saxon form and discussed in view of obtaining the parametrizations that are most stable with respect to extrapolations for the unknown nuclear ranges as e.g. in the case of various groups exotic nuclei. A new universal parametrization is obtained and an illustration presented.


2010 ◽  
Vol 19 (12) ◽  
pp. 2552-2557 ◽  
Author(s):  
K. Hagino ◽  
Myaing Thi Win ◽  
Y. Nakagawa

We use the self-consistent mean-field theory to discuss the ground state and decay properties of Λ hypernuclei. We first discuss the deformation of Λ hypernuclei using the relativistic mean-field (RMF) approach. We show that, although most of the hypernuclei have a similar deformation parameter to the core nucleus, the shape of 28 Si is drastically altered, from oblately deformed to spherical, if a Λ particle is added to this nucleus. We then discuss the pionic weak decay of neutron-rich Λ hypernuclei using the Skyrme Hartree-Fock + BCS method. We show that, for a given isotope chain, the decay rate increases as a function of mass number, due to the strong neutron-proton interaction.


2008 ◽  
Vol 17 (09) ◽  
pp. 1720-1728
Author(s):  
L. DANG ◽  
P. YUE ◽  
L. LI ◽  
P. Z. NING

The hyperon density dependence (YDD) of hyperon-nucleon interactions are studied in the relativistic mean field (RMF) model and their influences on the properties of neutron stars are studied. The extended RMF considered the interior quarks coordinates of hyperon and bring a hyperon density dependent factor, f(ρY), to the meson-hyperon coupling vertexes. The hyperon density dependence of YN interaction affect the properties of neutron stars only after the corresponding hyperon appears. Then, the influences of the density dependence factors are almost ignored at low densities, which are clear at high densities. The compositions and properties of neutron stars are studied with and without the YDD of YN interactions for the different Σ--nucleus effective potentials, (30, 0, -30)MeV. The calculated results indicated that the YDD of YN interaction soften the equation of state of neutron stars at high densities.


2013 ◽  
Vol 28 (05) ◽  
pp. 1350007 ◽  
Author(s):  
HÜSEYIN AYTEKIN ◽  
OZAN ARTUN

Binding energies and their differences are investigated to evaluate the two-neutron separation energies (S2n), the two-proton separation energies (S2p) and the average proton–neutron interaction strengths (δVpn) of neutron-rich Sr , Zr and Mo isotopes in the mass region A = 86–110, including even–even nuclei. Calculations were performed using the Hartree–Fock–Bogoliubov (HFB) method with different Skyrme force parametrizations. The obtained results are discussed and compared with the results of experimental and relativistic mean-field theory (RMFT).


Sign in / Sign up

Export Citation Format

Share Document