scholarly journals Effects of cold nuclear matter energy loss on inclusive jet production inp+Acollisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

2015 ◽  
Vol 92 (5) ◽  
Author(s):  
Zhong-Bo Kang ◽  
Ivan Vitev ◽  
Hongxi Xing
2018 ◽  
Vol 68 (1) ◽  
pp. 211-235 ◽  
Author(s):  
James L. Nagle ◽  
William A. Zajc

The bulk motion of nuclear matter at the ultrahigh temperatures created in heavy ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider is well described in terms of nearly inviscid hydrodynamics, thereby establishing this system of quarks and gluons as the most perfect fluid in nature. A revolution in the field is under way, spearheaded by the discovery of similar collective, fluid-like phenomena in much smaller systems including p+ p, p+ A, d+Au, and3He+Au collisions. We review these exciting new observations and their profound implications for hydrodynamic descriptions of small and/or out-of-equilibrium systems.


2018 ◽  
Vol 171 ◽  
pp. 11001
Author(s):  
Néstor Armesto

Many observables measured at the Relativistic Heavy Ion Collider and the Large Hadron Collider show a smooth transition between proton-proton and protonnucleus collisions (small systems), and nucleus-nucleus collisions (large systems), when represented versus some variable like the multiplicity in the event. In this contribution I review some of the physics mechanisms, named cold nuclear matter effects, that may lead to a collective-like behaviour in small systems beyond the macroscopic description provided by relativistic hydrodynamics. I focus on the nuclear modification of parton densities, single inclusive particle production and correlations.


Sign in / Sign up

Export Citation Format

Share Document