scholarly journals Innermost stable circular orbit of charged particles in Reissner-Nordström, Kerr-Newman, and Kerr-Sen spacetimes

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Kris Schroven ◽  
Saskia Grunau
2019 ◽  
Vol 28 (01) ◽  
pp. 1950013 ◽  
Author(s):  
Mustapha Azreg-Aïnou

We consider a stationary metric immersed in a uniform magnetic field and determine the general expressions for the epicyclic frequencies of charged particles. Applications to the Kerr–Newman black hole are reached of physical consequences and reveal some new effects among which are the existence of radially and vertically stable circular orbits in the region enclosed by the event horizon and the so-called “innermost” stable circular orbit (ISCO) in the plane of symmetry.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Monimala Mondal ◽  
Farook Rahaman ◽  
Ksh. Newton Singh

AbstractGeodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics ($$Q_o > Q_{\sigma }$$ Q o > Q σ ). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period $$(T_{photon}< T_{ISCO})$$ ( T photon < T ISCO ) among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.


2015 ◽  
Vol 336 (10) ◽  
pp. 1013-1016 ◽  
Author(s):  
M. Yu. Piotrovich ◽  
Yu. N. Gnedin ◽  
N. A. Silant'ev ◽  
T. M. Natsvlishvili ◽  
S. D. Buliga

2017 ◽  
Vol 14 (07) ◽  
pp. 1750101
Author(s):  
Parthapratim Pradhan

In this work, we study the equatorial causal geodesics of the Taub–NUT (TN) spacetime in comparison with massless TN spacetime. We emphasized both on the null circular geodesics and time-like circular geodesics. From the effective potential diagram of null and time-like geodesics, we differentiate the geodesics structure between TN spacetime and massless TN spacetime. It has been shown that there is a key role of the NUT parameter to changes the shape of pattern of the potential well in the NUT spacetime in comparison with massless NUT spacetime. We compared the innermost stable circular orbit (ISCO), marginally bound circular orbit (MBCO) and circular photon orbit (CPO) of the said spacetime with graphically in comparison with massless cases. Moreover, we compute the radius of ISCO, MBCO and CPO for extreme TN black hole (BH). Interestingly, we show that these three radii coincides with the Killing horizon, i.e. the null geodesic generators of the horizon. Finally in Appendix A, we compute the center-of-mass (CM) energy for TN BH and massless TN BH. We show that in both cases, the CM energy is finite. For extreme NUT BH, we found that the diverging nature of CM energy. First, we have observed that a non-asymptotic flat, spherically symmetric and stationary extreme BH showing such feature.


Sign in / Sign up

Export Citation Format

Share Document